loading

Logout succeed

Logout succeed. See you again!

ebook img

Abelian varieties associated to Gaussian lattices PDF

file size0.13 MB
languageEnglish

Preview Abelian varieties associated to Gaussian lattices

ABELIAN VARIETIES ASSOCIATED TO GAUSSIANLATTICES ARNAUDBEAUVILLE 2 1 ABSTRACT. Weassociatetoaunimodularlattice Γ,endowedwithanautomorphismofsquare 0 −1, a principally polarized abelian variety AΓ = ΓR/Γ. We show that the configuration of 2 i-invariantthetadivisorsofAΓ followsapatternverysimilartotheclassicaltheoryofthetachar- n acteristics;asaconsequencewefindthat AΓ hasahighnumberofvanishingthetanulls. When a Γ=E8 werecoverthe10vanishingthetanullsoftheabelianfourfolddiscoveredbyR.Varley. J 0 2 INTRODUCTION ] G AGaussianlatticeisafree,finitelygenerated Z[i]-module Γ withapositivehermitianform A Γ×Γ→Z[i]. Equivalently,wecanview Γ asalatticeover Z endowedwithanautomorphism . th i ofsquare −1Γ. Thisgivesacomplexstructureonthevectorspace ΓR :=Γ⊗ZR;weassociate a m to Γ thecomplextorus AΓ :=ΓR/Γ. Asacomplex torus A isisomorphic to Eg, where E isthe complexelliptic curve C/Z[i] [ Γ 2 and g = 12rkZΓ. Moreinterestingly,thehermitianformprovidesapolarizationon AΓ (see(1.3) v below); inparticular,if Γ isunimodular, A isaprincipallypolarizedabelianvariety(p.p.a.v. 3 forshort),whichisindecomposableif Γ isindecomposable. 4 8 The first non-trivial case is g = 4, with Γ the root lattice of type E8 (Example1.2.1). The 2 resulting p.p.a.v. is the abelian fourfold discovered by Varley [V] with a different(and more . 2 geometric)description; ithas10“vanishingthetanulls” (eventhetafunctions vanishingat0), 1 1 themaximumpossiblefora4-dimensionalindecomposablep.p.a.v. Infactthispropertychar- 1 acterizestheVarleyfourfoldoutsidethehyperellipticJacobianlocus[D]. : v Our aim is to explain this property from the lattice point of view, and to extend it to all i X unimodularlattices. Itturnsoutthatwecanmimictheclassicaltheoryofthetacharacteristics, r replacingtheautomorphism (−1) by i. Wewillshow: a • Thegroup A of i-invariantpointsof A isa F -vectorspaceofdimension g;itadmitsa i Γ 2 naturalnon-degeneratebilinearsymmetricform b. • The set of i-invarianttheta divisors of A is anaffine space over A , isomorphic to the Γ i spaceofquadraticformson A associatedto b (see(2.1)). i • Let Θ be an i-invariant theta divisor, and Q the corresponding quadratic form. The multiplicity m (Θ) of Θ at 0 satisfies 0 2m (Θ)≡σ(Q)+g (mod.8), 0 where σ istheBrowninvariantoftheform Q (2.1). Date:January23,2012. 1 2 ARNAUDBEAUVILLE As a consequence, we obtain a high number of i-invariant divisors Θ with m (Θ) ≡ 2 0 (mod.4); eachofthemcorrespondstoavanishingthetanull. When Γ iseven,thisnumberis 22g−1(2g2 −(−1)g4);for g =4 werecoverthe10vanishingthetanullsoftheVarleyfourfold. 1. GAUSSIANLATTICES 1.1. Lattices. As recalled in the Introduction, a Gaussian lattice is a free finitely generated Z[i]-module Γ endowedwithapositivehermitianform1 H :Γ×Γ→Z[i]. Wewrite H(x,y)= S(x,y)+iE(x,y); S and E are Z-bilinearformson Γ, S issymmetric, E isskew-symmetric, andwehave S(ix,iy)=S(x,y) , E(ix,iy)=E(x,y) , E(x,y)=S(ix,y). WewillratherviewaGaussianlatticeasanordinarylattice(over Z)withanautomorphism i suchthat i2 =−1 : thelastformulaabovedefines E,andwehave H =S+iE. Γ Wehave detS = detE = (detH)2; thelatticeisunimodularwhenthesenumbersareequal to 1. It is even if S(x,x) is even for all x ∈ Γ. We say that Γ is indecomposable over Z[i] if it cannotbewrittenastheorthogonalsumoftwononzeroGaussianlattices;thisisofcoursethe caseif Γ isindecomposableover Z,buttheconverseisfalse(Example3below). 1.2. Examples. 1)For g even,thelattice Γ is 2g 1 Γ :={(x )∈R2g |x ∈ Z, x −x ∈Z, x ∈2Z}. 2g j j j k j 2 X Theinnerproductisinheritedfromtheeuclideanstructureof R2g,andtheautomorphism i is giveninthestandardbasis (e ) by j ie2j−1 =e2j ie2j =−e2j−1 for 1≤j ≤g. Thelattice Γ isunimodular,indecomposablewhen g >2,andevenif g isdivisibleby4.The 2g firstcase g =4 givestherootlattice E . 8 Theautomorphism i isuniqueuptoconjugacy: for g =4 thisisclassical[C],andfor g ≥ 6 this follows easily from the fact that Aut(Γ ) is the semi-direct product (Z/2)2g−1 ⋊ S , 2g 2g actingbypermutationandevenchangesofsignofthebasisvectors (e ). j 2) The Leech lattice Λ admits an automorphism of square −1 [C-S], also unique up to 24 conjugacy. 3)Let Γ0 bealattice,and Γ:=Γ0⊗ZZ[i]. Theinnerproductof Γ0 extendstoanhermitian inner product on Γ, which is then a gaussian lattice. If Γ is unimodular, resp. even, resp. 0 indecomposable, Γ isunimodular,resp.even,resp.indecomposableover Z[i]. 1OurconventionisthatH(x,y) isC-linearin y. ABELIANVARIETIESASSOCIATEDTOGAUSSIANLATTICES 3 1.3. TheabelianvarietyAΓ. LetΓbeaGaussianlattice,ofrank2g overZ. WeputΓR :=Γ⊗ZR and AΓ := ΓR/Γ. The automorphism i defines a complex structure on ΓR, so that AΓ is a complextorus. Since Γ isafree Z[i]-module, A isisomorphicto Eg,where E isthecomplex Γ ellipticcurve C/Z[i]. ThepositivehermitianformH extendstoΓR,anditsimaginarypartE takesintegralvalues on Γ: thisisbydefinitionapolarizationon A . Thepolarizationisprincipalifandonlyif Γ is Γ unimodular;thep.p.a.v. A isindecomposable(i.e. isnotaproductoftwonontrivialp.p.a.v.) Γ ifandonlyif Γ isindecomposableover Z[i]. The multiplication by i on ΓR inducesanautomorphism of AΓ, that we simply denote i. Conversely,let A=V/Γ beacomplextorus,ofdimension g,withanautomorphisminducing on T (A) = V the multiplication by i. Then Γ is a Z[i]-module, thus isomorphic to Z[i]g, 0 sothat A isisomorphicto Eg;polarizationsof A correspondbijectivelytopositivehermitian formson Γ. 2. LINEARALGEBRAOVER F2[i] 2.1. Linearalgebra over F . We consider a vector space V over F , of dimension g, with a 2 2 non-degeneratesymmetricbilinearform b on V . Twodifferentsituationsmayoccur: • b(x,x)=0 forall x∈V ;inthatcase b isasymplecticform. • b(x,x) isnotidenticallyzero;itistheneasy(usinginductionon g)toprovethat V admits anorthonormalbasiswithrespectto b. Aquadraticformassociatedto b isafunction q :V →Z/4 suchthat q(x+y)=q(x)+q(y)+2b(x,y) forx,y ∈V , wheremultiplicationby2standsfortheisomorphism Z/2 −∼→ 2Z/4Z⊂Z/4Z. Observethatthisimplies q(0)=0 and q(x)≡b(x,x)(mod.2). Wedenoteby Q thesetof b quadraticformsassociatedto b;itisanaffinespaceover V ,theactionof V on Q beinggiven b by (α+q)(x)=q(x)+2b(α,x) for q ∈Q , α,x∈V . b Whenbissymplectic, q takesitvaluesin2Z/4Z∼=Z/2;thecorrespondingformq′ :V →Z/2 isaquadraticformassociatedto b intheusualsense,thatissatisfies q′(x+y)=q′(x)+q′(y)+ b(x,y) for x,y ∈V . TheBrowninvariant σ(q)∈Z/8 ofaform q ∈Q hasbeenintroducedin[B]asageneraliza- b tionoftheArfinvariant;itcanbedefinedasfollows.Ifbissymplectic,weputσ(q):=4Arf(q′), where q′ : V → Z/2 is the form defined above. Otherwise b admits an orthonormal basis (e ,...,e ); we have q(e ) = ±1,andwelet g+ (resp. g−)bethenumber ofbasisvectors e 1 g i i suchthat q(e )=1 (resp. −1).Then σ(q)=g+−g−(mod.8). i 2.2. Linearalgebraover F2[i]. Let Γ beaunimodularGaussianlatticeofrank 2g over Z. We put A := Γ/2Γ; this is naturallyidentified with the 2-torsion subgroup of A . We have the 2 Γ followingstructureson A : 2 4 ARNAUDBEAUVILLE a) A isafree F [i]-moduleofrank g. Weput ε := 1+i in F [i];then F [i] = F [ε],with 2 2 2 2 2 ε2 = 0. The subgroup A of i-invariant elements is Kerε = εA ; it is a F -vector space of i 2 2 dimension g. b)TheformE inducesonA asymplecticforme(theWeilpairingforA ).SinceE(x,iy)= 2 Γ −E(ix,y),wehave,for α,β ∈A , 2 e(α,εβ)=e(εα,β) hence e(εα,εβ)=0; thus A isaLagrangiansubspaceof A . i 2 c) Theform x7→S(x,x) inducesaquadraticform Q: A →Z/4 associatedwiththebilin- 2 earsymmetricform (α,β)7→e(α,iβ) (2.1).Inparticularwehave Q(α)≡e(α,iα)(mod.2). Since S((1+i)x,(1+i)x)=2S(x,x),wehave Q(εα)=2Q(α)=2e(α,iα). Lemma1. Let q :A →Z/4 bean i-invariantquadraticformassociatedto e. Theformulas 2 b(εα,εβ)=e(α,εβ) , Q (εα)=q(α)−Q(α) for α,β ∈A , q 2 define on A = εA a non-degenerate symmetric form b and a quadratic form Q : A → Z/4 i 2 q i associatedwith b. Proof : Since A =Kerε isisotropicfor e,theexpression e(α,εβ) isabilinearfunction b of εα i and εβ; itissymmetric by b). If e(α,εβ) = 0 forall β in A we have α ∈ A because A is 2 i i Lagrangian,hence εα=0,so b isnon-degenerate. Put Q˜ (α)=q(α)−Q(α)∈Z/4 for α∈A . Wehave q 2 Q˜ (α+β)=Q˜ (α)+Q˜ (β)+2e(α,εβ). q q q Take β =εγ.Since q is i-invariantwehave q(εγ)=2e(γ,iγ)=Q(εγ)byc),hence Q˜ (εγ)=0 q and Q˜ (α+εγ)=Q˜ (α). Thus Q˜ definesaquadraticform Q on A associatedto b. q q q q i Let Q(ei) be the set of i-invariantsquadratic forms on A2 associated to e. If q ∈ Qe(i) and α ∈ A2,wehave α+q ∈ Q(ei) ifandonlyif α belongsto A⊥i = Ai;inotherwords, Qe(i) isan affinesubspaceof Q ,withdirection A . e i Lemma2. Themap q 7→Qq isanaffineisomorphismof Qe(i) onto Qb. Proof : Wejusthavetoprovetheequality Qα+q =α+Qq for q ∈Qe(i), α∈Ai. Let β ∈Ai;we write β =εβ′ forsome β′ ∈A . Then 2 ′ ′ ′ Q (β)=2e(α,β )+q(β )−Q(β )=2b(α,β)+Q (β). α+q q Remark1. Let α∈A ;wehave b(εα,εα)=e(α,εα)=e(α,iα)≡Q(α)(mod.2),hencetheform 2 b issymplecticifandonlyif Γ iseven. Inthiscasewehave e(α,iα)=0 forall α∈A ;itfollows 2 that Q(ei) is the set of forms vanishing on Ai. Since Ai is Lagrangianfor e, this implies that theseforms, viewedasquadraticforms A → Z/2, arealleven(thatis, theirArfinvariantis 2 0). ABELIANVARIETIESASSOCIATEDTOGAUSSIANLATTICES 5 3. i-INVARIANT THETADIVISORS 3.1. Reminderonthetacharacteristics. Wefirstrecalltheclassicaltheoryofthetacharacteris- ticsonanarbitraryp.p.a.v. A = V/Γ. Let A ∼= Γ/2Γ bethe2-torsionsubgroupof A, T the 2 setof symmetric theta divisors on A, and Q the set of quadraticforms on A associated to e 2 theWeylpairing e. The F -vectorspace A actson T bytranslation,andon Q bytheaction 2 2 e definedin(2.1);bothsetsareaffinespacesover A ,andthereisacanonicalaffineisomorphism 2 q 7→Θ of Q onto T . Itcanbedefinedasfollows([M],§2). Let γ ∈Γ,andlet γ¯ beitsclassin q e A . For z ∈V ,weput 2 eγ(z)=iq(γ¯)eπH(γ,z+γ2) . We define an action of Γ on the trivial bundle V ×C by γ.(z,t) = (z +γ,e (z)t); then the γ quotientof V ×C bythisactionisthelinebundle O (Θ ) on A. A q 3.2. The main results. We go back to the abelianvariety A associated to a Gaussian lattice Γ Γ. Weassumethat Γ isunimodular. Weusethenotationof(2.2). Theisomorphism Q −∼→ T e iscompatiblewiththeactionof i,so i-invariantthetadivisorscorrespondtoforms q ∈Qe(i). Let q ∈ Q(ei), and let L be the line bundle OAΓ(Θq). We have i∗L ∼= L; we denote by ι : i∗L → L theuniqueisomorphisminducingtheidentityof L . Foreach α ∈ A , ι induces 0 i anisomorphism ι(α):L →L . α α Proposition1. ι(α) isthehomothetyofratio iQq(α). Proof : Theisomorphism ι−1 : L −∼→ i∗L correspondstoalinearautomorphism j of L above i: j // L L (cid:15)(cid:15) (cid:15)(cid:15) i // A A . Γ Γ Consider the automorphism ˜j : (z,t) 7→ (iz,t) of ΓR × C. Since eiγ(iz) = eγ(z), we have ˜j(γ.(z,t)) = (iγ).˜j(z,t). Thus ˜j factorsthroughanisomorphism L → L above i whichisthe identityon L ,henceequalto j;thatis,wehaveacommutativediagram: 0 ΓR×C ˜j // ΓR×C π π (cid:15)(cid:15) (cid:15)(cid:15) j // L L where π isthequotientmap. Let α ∈ A , and let γ be an element of Γ whose class (mod. 2Γ) is α. Then δ := iγ − γ i 2 2 belongsto Γ. Wehave γ iγ γ γ j(π( ,t))=π( ,t)=π( ,e ( )−1t), δ 2 2 2 2 6 ARNAUDBEAUVILLE hence ι(α) = j(α)−1 is the homothety of ratio e (γ). Let β be the class of δ in A . Since δ 2 2 γ =−(1+i)δ,wehave α=εβ,hence γ eδ( )=iq(β)eπ2H(δ,γ+δ) =iq(β)−H(δ,δ) =iQq(α) . 2 From ι : i∗L → L we deduceanisomorphism ι♭ : L −∼→ i∗L, inducing onglobalsections anautomorphismof H0(A ,L). Γ Proposition2. ι♭ actson H0(AΓ,L) bymultiplicationby ei4π(σ(Qq)+g). Notethat σ(Q )≡g(mod.2) ([B],Thm. 1.20,(vi)),sothisnumberisapowerof i. q Proof : Since dimH0(A ,L)= 1 itsufficestocompute Trι♭. Thisisgivenbytheholomorphic Γ Lefschetzformula[A-B]appliedto (i,ι). Since Hi(A ,L)=0 for i>0,wefind Γ Trι(α) Trι♭ = =(1−i)−g iQq(α). (1−i)g αX∈Ai αX∈Ai We have (1−i)−g = 2−g2eiπ4g and α∈AiiQq(α) = 2g2ei4πσ(Qq) ([B],Thm. 1.20,(xi)),hence theresult. P Proposition3. Let α∈A ,andlet m (Θ ) bethemultiplicityof Θ at α. Wehave i α q q 2m (Θ )≡σ(Q )+g−2Q (α) (mod.8). α q q q Proof : Let θ beanonzerosectionof H0(A ,L). Choose alocalnon-vanishing section s of L Γ around α. Wecanwrite θ =fs inaneighborhoodof α,with f ∈O . Wehave ι♭(θ)=ikθ AΓ,α with 2k≡σ(Q )+g(mod.8) (Proposition2),hence q (i∗f)ι♭(s)=ikfs. Welookatthisequalityin mmL/mm+1L,where m isthe maximalidealof O and m := α α α AΓ,α m (Θ).Wehavei∗f =imf (mod.mm+1),andι♭(s)=ι(α)s(mod.m L).Weobtainimι(α)=ik, α α α hencetheresultinviewofProposition1. Corollary. Thenumberof i-invariantthetadivisors Θ with m (Θ)≡2(mod.4) is 0 2g2−1(2g2 −(−1)g4) if Γ iseven, and 2g−2−22g−1cosπg if Γ isodd; 4 eachofthesedivisorscorrespondstoavanishingthetanull. Proof :AccordingtotheProposition,wehave m (Θ )≡2 (mod.4) ifandonlyif σ(Q )≡4−g 0 q q (i) (mod.8). When q runsover Qe , Qq runsover Qb (Lemma2.2),sowemustfindhowmany elements Q of Q satisfy σ(Q)≡4−g (mod.8). b If Γ is even (so that g is divisible by 4), we identify Q with the set of quadratic forms b Q : A → Z/2 associated with the symplectic form b; the previous congruence becomes 2 Arf(Q) ≡ 1 + g (mod. 2). There are 2g2−1(2g2 + 1) such forms with Arf invariant 0 and 4 2g2−1(2g2 −1) withArfinvariant1,hencetheresult. ABELIANVARIETIESASSOCIATEDTOGAUSSIANLATTICES 7 Assumethat Γ isodd;wechooseanorthonormalbasis (e ,...,e ) for b.Theforms Q∈Q 1 g b aredeterminedbytheirvalues Q(e )= ±1;theconditionisthatthenumber g+ of +1 values i satisfies 2g+−g ≡4−g(mod.8), hence g+ ≡2(mod.4). Thenumberofformswiththerequiredpropertyisthusthenumberofsubsets E ⊂ {1,...,g} with Card(E)≡2(mod.4),thatis g + g +...= 1 (1+1)g+(1−1)g−(1+i)g−(1−i)g =2g−2−22g−1cosπg . (cid:18)2(cid:19) (cid:18)6(cid:19) 4 4 (cid:2) (cid:3) Thuswe find anumber of vanishingthetanullsasymptotically equivalentto 2g−1 when Γ is even, and 2g−2 when Γ is odd. These numbers are rather modest, at least by comparison with the number of vanishing thetanulls of a hyperelliptic Jacobian, which is asymptotically equivalentto 22g−1. However, when Γ iseven, the vanishingthetanullsof A havethe par- Γ ticular property of being “syzygetic” in the classical terminology, which just means that the corresponding quadratic forms (3.1) lie in an affine subspace of Q which consists of even e forms(Remark1). Suchasubspacehasdimension ≤g,anditmightbethatthenumbergiven bytheCorollaryintheevencaseisthemaximumpossibleforasyzygeticsubsetofvanishing thetanulls. 4. COMPLEMENTS 4.1. Automorphisms. Theautomorphismgroupof A isthecentralizerof i in Aut(Γ). This Γ groupcanberatherlarge:ithasorder46080for Γ=E and2012774400for Γ=Λ [C-S]. For 8 24 thelattice Γ (Example1.2.1)with g >4,ithasorder 22g−1g!. 2g For the lattice Γ = Γ0 ⊗Z Z[i] of Example 1.2.3, Aut(AΓ) is generated by i and the group Aut(Γ ). Notethatthereareexamplesofunimodularlattices(evenorodd) Γ with Aut(Γ )= 0 0 0 {±1} [Ba],sothat Aut(A ) isreducedto {±1,±i}. Γ 4.2. Jacobians. We observe that for g > 1 the p.p.a.v. A can not be a Jacobian. Indeed, let Γ C be a curve of genus g; if JC ∼= A , Torelli theorem provides an automorphism u of C Γ inducingeither i or −i on JC,hencealsoon T (JC)= H0(C,K )∗. Then u actstriviallyon 0 C theimageofthecanonicalmap C →P(H0(C,K )∗);thisimpliesthat u istheidentityorthat C C ishyperellipticand u isthehyperellipticinvolution. Butinthesecases u actson H0(C,K ) C bymultiplicationby ±1,acontradiction. REFERENCES [A-B] M.Atiyah,R.Bott:ALefschetzFixedPointFormulaforEllipticComplexes:II.Applications.Ann.ofMath.(2) 88(1968),451–491. [Ba] R.Bacher:Unimodularlatticeswithoutnontrivialautomorphisms.Int.Math.Res.Notes2(1994),91–95. [B] E.H.Brown,Jr.:GeneralizationsoftheKervaireinvariant.Ann.ofMath.(2)95(1972),368–383. [C] R.W.Carter:ConjugacyclassesintheWeylgroup.CompositioMath.25(1972),1–59. 8 ARNAUDBEAUVILLE [C-S] J.H.Conway,N.Sloane: D4,E8,Leechandcertainotherlatticesaresymplectic.Invent.Math.117(1994),no.1, 53–55. [D] O.Debarre: Annulationdetheˆtaconstantessurlesvarie´te´sabe´liennesdedimensionquatre.C.R.Acad.Sci. ParisSe´r.IMath.305(1987),no.20,885–888. [M] D.Mumford:Abelianvarieties.OxfordUniversityPress,London,1970. [V] R.Varley: Weddle’ssurfaces,Humbert’scurves,andacertain4-dimensionalabelianvariety.Amer.J.Math. 108(1986),no.4,931–952. LABORATOIREJ.-A.DIEUDONNE´,UMR7351DUCNRS,UNIVERSITE´DENICE,PARCVALROSE,F-06108NICE CEDEX2,FRANCE E-mailaddress:[email protected]

See more

The list of books you might like