loading

Logout succeed

Logout succeed. See you again!

ebook img

Advances in Mathematical Inequalities PDF

pages269 Pages
release year2020
file size8.617 MB
languageEnglish

Preview Advances in Mathematical Inequalities

ShigeruFuruichi,HamidRezaMoradi AdvancesinMathematicalInequalities Also of Interest NonlinearEvolutionEquation Guo,Boling/Chen,Fei/Shao,Jing/Luo,Ting,tobepublished2020 ISBN978-3-11-062467-0,e-ISBN(PDF)978-3-11-061478-7, e-ISBN(EPUB)978-3-11-061547-0 Space-TimeMethods ApplicationstoPartialDifferentialEquations Ed.byLanger,Ulrich/Steinbach,Olaf,2019 ISBN978-3-11-054787-0,e-ISBN(PDF)978-3-11-054848-8, e-ISBN(EPUB)978-3-11-054799-3 DifferentialEquations AfirstcourseonODEandabriefintroductiontoPDE Ahmad,Shair/Ambrosetti,Antonio,2019 ISBN978-3-11-065003-7,e-ISBN(PDF)978-3-11-065286-4, e-ISBN(EPUB)978-3-11-065008-2 GameTheoryandPartialDifferentialEquations Blanc,Pablo/Rossi,JulioDaniel,2019 ISBN978-3-11-061925-6,e-ISBN(PDF)978-3-11-062179-2, e-ISBN(EPUB)978-3-11-061932-4 Shigeru Furuichi, Hamid Reza Moradi Advances in Mathematical Inequalities | MathematicsSubjectClassification2010 Primary:47A63,47A60,46L05,47A30,47A12;Secondary:26D15,15A60,94A17,15A39,15A45, 26D07,47B15,47A64 Authors Prof.ShigeruFuruichi Dr.HamidRezaMoradi 3-25-40Sakurajousui DepartmentofMathematics 156-8550Tokyo PayameNoorUniversity Japan 19395-4697P.O.Box [email protected] Tehran Iran [email protected] ISBN978-3-11-064343-5 e-ISBN(PDF)978-3-11-064347-3 e-ISBN(EPUB)978-3-11-064364-0 LibraryofCongressControlNumber:2019955079 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2020WalterdeGruyterGmbH,Berlin/Boston Coverimage:porcorex/E+/gettyimage.de Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Inmathematics,thewordinequalitymeansadisparitybetweentwoquantities,which isusedtoreflectthecorrelationbetweentwoobjects.Aninequalityimpliesthattwo amountsarenotequal.Inthe19thcenturyandwiththeemergenceofcalculus,the touchoftheinequalitiesanditsroleincreasinglybecameessential. Inmodernmathematics,inequalitiesplaysignificantrolesinalmostallfieldsof mathematics.Severalapplicationsofinequalitiesarefoundinlinearoperators,partial differentialequations,nonlinearanalysis,approximationtheory,optimizationtheory, numericalanalysis,probabilitytheory,statistics,andotherfields. Thebookmaybeusedbyresearchersindifferentbranchesofmathematicaland functionalanalysis,wherethetheoryofHilbertspacesisofrelevance.Sinceitisself- containedandalltheresultsareentirelyproved,theworkmayalsobeusedbygrad- uatestudentsinterestedintheoryofinequalitiesanditsapplications. Forthesakeofcompleteness,alltheresultspresentedarewhollyproved,andthe originalreferenceswheretheyhavebeenfirstobtainedarementioned. Finally,wewouldliketothanktoDr.Y.Tsurumi,andDr.F.-C.Mitroi-Symeonidis forcarefulcheckingtoimproveourmanuscript.Inaddition,thisbookwillnotbepub- lishedwithoutcooperationofallcoauthorsinourpapers.Sowewouldliketothank toallpreviouscoauthors.Wealsowouldliketothanktoourfamilysincetheygaveus timetowritethisbookwithasmile. https://doi.org/10.1515/9783110643473-201 Contents Preface|V 1 Introductionandpreliminaries|1 1.1 Introduction|1 1.2 Preliminaries|2 2 RefinementsandreversesforYounginequality|9 2.1 ReversesforKittaneh–Manasrahinequality|12 2.2 YounginequalitieswithSpechtratio|14 2.3 ReverseYounginequalities|17 2.4 GeneralizedreverseYounginequalities|19 2.5 Younginequalitiesbyexponentialfunctions|23 2.5.1 ElementaryproofsforDragomir’sinequalities|23 2.5.2 Furtherrefinementsbyr-exponentialfunction|28 2.6 Younginequalitieswithnewconstants|32 2.7 Moreaccurateinequalities|36 2.7.1 Inequalitiesforpositivelinearmaps|41 2.7.2 Inequalitiestooperatormonotonefunctions|42 2.8 Sharpinequalitiesforoperatormeans|46 2.8.1 Operatormeansinequalities|47 2.8.2 Younginequalitiesbysharpconstants|53 2.9 ComplementtorefinedYounginequality|57 2.9.1 RefinementofKantorovichinequality|57 2.9.2 Operatorinequalitiesforpositivelinearmaps|62 2.10 OnconstantsappearinginrefinedYounginequality|64 3 Inequalitiesrelatedtomeans|69 3.1 Operatorinequalitiesforthreemeans|69 3.2 Heronmeansforpositiveoperators|71 3.3 InequalitiesrelatedtoHeronmean|78 3.4 Somerefinementsofoperatorinequalitiesforpositivelinear maps|82 4 Norminequalitiesandtraceinequalities|91 4.1 Unitarilyinvariantnorminequalities|92 4.2 Traceinequality|100 4.2.1 Traceinequalitiesforproductsofmatrices|103 4.2.2 Conjecturedtraceinequality|108 4.2.3 Belmega–Lasaulce–Debbahinequality|113 VIII | Contents 5 ConvexfunctionsandJenseninequality|117 5.1 AgeneralizedoperatorJenseninequality|117 5.2 Choi–Davis–Jenseninequalitywithoutconvexity|124 5.3 OperatorJensen–Mercerinequality|128 5.4 Inequalitiesforoperatorconcavefunction|138 5.5 BoundsonoperatorJenseninequality|143 5.6 Operatorinequalitiesviageometricconvexity|150 5.6.1 Scalarinequalities|151 5.6.2 Numericalradiusinequalities|154 5.6.3 Matrixnorms|160 5.7 Exponentialinequalitiesforpositivelinearmaps|161 5.8 Jensen’sinequalityforstronglyconvexfunctions|170 6 Reversesforclassicalinequalities|179 6.1 ReversesforcomplementedGolden–Thompsoninequalities|179 6.2 ReversesforoperatorAczélinequality|185 6.3 ReversesforBellmanoperatorinequality|191 7 Applicationstoentropytheory|197 7.1 Someinequalitiesonthequantumentropies|198 7.2 Karamatainequalitiesandapplications|203 7.3 Relativeoperatorentropy|210 7.3.1 Refinedboundsforrelativeoperatorentropies|210 7.3.2 Reversestoinformationmonotonicityinequality|215 8 Miscellaneoustopics|225 8.1 Kantorovichinequality|225 8.1.1 NewoperatorKantorovichinequalities|225 8.1.2 Functionsreversingoperatororder|229 8.1.3 NewrefinedoperatorKantorovichinequality|233 8.2 Skewinformationanduncertaintyrelation|238 8.2.1 Skewinformationanduncertaintyrelation|239 8.2.2 SchrödingeruncertaintyrelationwithWigner–Yanaseskew information|241 Bibliography|247 Index|257 1 Introduction and preliminaries 1.1 Introduction Mathematicalinequalitiesareappliedtomanyfieldsonnaturalscienceandengineer- ingtechnology.Someresearchersinsuchfieldsmayfindtheinequalitiesfrombooks orpaperstosolvetheirproblems,whileothersmaydiscovernewinequalitiesifthey donotfindthemintheliterature.Foralmostallresearchers,mathematicalinequal- itiesarejusttoolstosolvetheirproblemsorimprovetheirresults.Suchmotivations arequitenaturaltodeveloptheirstudies,justbecauseofthebeautyoftheirform.On theotherhand,mathematiciansliketodiscovernewinequalities.Theyoftendonot thinkofitspossibleapplications.Afewyearsago,Iwasaskedforaproofofthefol- lowingbeautifulinequalitybymyacquaintancefromJapan,whenIwasinBudapest foraconference.Heaskedmewhetherthefollowinginequalityisalreadyknown.He needed its proof to establish the nonnegativity of thermodynamic entropy for total systems. z x y y z x x>y>z >0 ⇒ x y z >x y z . Igaveaproofforhisquestionasfollow.Sincetherepresentingfunction(t−1)/logt ismonotoneincreasingfort > 0,wehave(u−1)/logu > (t−1)/logt ⇔ tu−1 > ut−1 foru > t > 1.Puttingst = u,wehaves1tts > stfors,t > 1.Puttingagaint = y/z > 1, s=x/y>1,wehave(y/z)x−y >(x/y)y−z ⇔yx−y+y−z >xy−zzx−y ⇔xzyxzy >xyyzzx. HealsoaskedthisquestiontoseveralJapanesemathematiciansandhereported severalproofsduringmystayinBudapest.Everyproofwasdifferent.Ienjoyedhisre- portandguessedthatsodidtheothercolleagues.Afewmathematiciansfoundand proveditsextensionston-variables.Aftermyreturn,Icheckedmybooksonmathe- maticalinequalities,butIcouldnotfindtheliterature.Severalmathematiciansalso couldnotfindtheoriginalsourceofthisinequality.Nevertheless,itisnaturaltocon- siderthatthisinequalityisalreadyknownsinceitisverysimpleandbeautifulinits form.Halfayearlater,oneofours(H.Ohtsuka)foundthatthisinequalitywasposed byM.S.KlamkinandL.A.Sheppin[132]inamoregeneralcase(n-variables): xn ≥xn−1 ≥⋅⋅⋅x2 ≥x1 ≥0⇒x1x2x2x3⋅⋅⋅xnx1 ≥x2x1x3x2⋅⋅⋅x1xn, (n≥3) withequalityholdingonlyifn−1ofnumbersareequal. We leave the solution of this question to the readers. Mathematicians studying inequalitiesareoftenobsessedwithabeautifulinequality.Withinjustoneweekafter thequestion,severalmathematiciansgavedifferentproofsofittoeachother. Wethinktheadvancesofmathematicalinequalitiesmaydependonfindingap- plicationstootherfieldsand/orinterestsininequalitiesthemselves.Here,wepresent ourrecentadvancesonmathematicalinequalities.Almostallresultswereestablished withinthelastfewyears.However,wehaveaddedlessrecentresultssincetheymay https://doi.org/10.1515/9783110643473-001

See more

The list of books you might like