Logout succeed
Logout succeed. See you again!

An equivalence preserving transformation from the Fibonacci to the Galois NLFSRs PDF
Preview An equivalence preserving transformation from the Fibonacci to the Galois NLFSRs
An Equivalence Preserving Transformation from the Fibonacci to the Galois NLFSRs ElenaDubrova RoyalInstituteofTechnology(KTH),Electrum229,16446Kista,Sweden 8 [email protected] 0 0 2 Abstract. ConventionalNon-LinearFeedbackShiftRegisters(NLFSRs)usethe n a Fibonacci configuration in which the value of the first bit is updated accord- J ing to some non-linear feedback function of previous values of other bits, and 0 eachremainingbitrepeatsthevalueofitspreviousbit.Weshow how totrans- 3 formthefeedbackfunctionofaFibonacciNLFSRintoseveralsmallerfeedback functionsofindividualbits.Suchatransformationreducesthepropagationtime, ] thusincreasingthespeedofpseudo-random sequencegeneration.Thepractical R significance of thepresented technique isthat ismakes possible increasing the C keystreamgenerationspeedofanyFibonacciNLFSR-basedstreamcipherwith . nopenaltyinarea. s c [ Keywords: Fibonacci NLFSR, Galois NLFSR, pseudo-randomsequence, keystream, 2 streamcipher. v 9 7 1 Introduction 0 4 . Non-LinearFeedbackShiftRegisters(NLFSRs) havebeenproposedasan alternative 1 0 to LinearFeedbackShiftRegisters(LFSRs) forgeneratingpseudo-randomsequences 8 forstreamciphers.NLFSR-basedstream ciphersincludeAchterbahn[1],Dragon[2], 0 Grain[3],Trivium[4],VEST[5],and[6].NLFSRshavebeenshowntobemoreresis- v: tanttocryptanalyticattacksthanLFSRs[7,8].However,constructionoflargeNLFSRs i with guaranteed long periods remains an open problem. A systematic algorithm for X NLFSR synthesis has not been discoveredso far. Only some special cases have been r considered[9,10,11,12,13,14,15,16,17]. a Ingeneral,therearetwowaystoimplementanNLFSR:intheFibonacciconfigu- ration,orintheGaloisconfiguration.TheFibonacciconfiguration,showninFigure1, is conceptuallymoresimple. The Fibonaccitype of NLFSRs consists of a numberof bitsnumberedfromlefttorightasn−1,n−2,...,0withfeedbackfromeachbittothe n−1thbit.Ateachclockinginstance,thevalueofthebitiismovedtothebiti−1.The valueofthebit0becomestheoutputoftheregister.Thenewvalueofthebitn−1is computedassomenon-linearfunctionofthepreviousvaluesofotherbits. IntheGaloistypeofNLFSR,showninFigure2,eachbitiisupdatedaccordingto its ownfeedbackfunction.Thus,in contrastto the FibonacciNLFSRs in whichfeed- back is applied to the n−1th bit only, in the Galois NLFSRs feedback is potentially appliedtoeverybit.SincethenextstatefunctionsofindividualbitsofaGaloisNLFSR feedbackfunction ... n−1 n−2 n−3 0 output Fig.1.AnFibonaccitypeofNLFSR. are computedin parallel, the propagationtime is reducedto thatof smaller functions ofindividualbits.ThismakesGaloisNLFSRsparticularlyattractiveforstreamciphers applicationinwhichhighkeystreamgenerationspeedisimportant. However,GaloisNLFSRsalsohavethefollowingtwodrawbacks: 1. Ann-bitGaloisNLFSRwiththe periodof2n−1doesnotnecessarilysatisfythe 1st and the 2nd postulates of Golomb [18]. An n-bit Fibonacci NLFSR with the periodof2n−1alwayssatisfybothpostulates[9]. 2. TheperiodoftheoutputsequenceofaGaloisNLFSRisnotnecessarilyequaltothe lengthofthelongestcyclicsequenceofitsconsecutivestates[18].Theperiodofa FibonacciNLFSRalwaysequalsto thelongestcyclicsequenceofitsconsecutive states[9]. These drawbacks do not create any problems in the linear case because, for LF- SRs, there exist a one-to-one mapping between the Fibonacci and Galois configura- tions.AGaloisLFSRgeneratingthesameoutputsequenceasagivenFibonacciLFSR (andthereforepossessingnoneoftheabovementioneddrawbacks)canbeobtainedby reversing the order of the feedback taps and adjusting the initial state. For example, Figure 3 showsthe Fibonacciand Galois configurationsforthe generatorpolynomial x3+x+1. If the FibonacciLFSR is initialized to the state 001 and the Galois one is initializedtothestate101,thentheygeneratethesameperiodicsequence1001011. Inthenon-linearcase,however,nomappingbetweentheFibonacciandtheGalois configurationshas been known until now. The problem of finding such a mapping is addressedinthispaper.Weshowthat,foreachFibonacciNLFSR,thereexistaclassof equivalentGaloisNLFSRswhichproducethesameoutputsequence.Weshowhowto transformagivenFibonacciNLFSRintoanequivalentGaloisNLFSR. Themostsignificantcontributionofthe paperis a sufficientconditionforequiva- lenceoftwoNLFSRsbeforeandafterthetransformation.Itisformulatedandproved forthegeneralcasewhichcoversnotonlytheequivalencebetweenaFibonaccianda GaloisNLFSRs,butonlytheequivalencebetweentwoGaloisNLFSRs. Thepaperisorganizedasfollows.Section2describesmainnotionsanddefinitions used in the sequel. Section 3 formulatesa sufficientconditionfor existence of a non- linear recurrence describing the output sequence of an NLFSR. Section 4 presents a sufficientconditionfortheequivalenceoftwoNLFSRs.InSection5,wedefineaGalois NLFSR which is unique for a given Fibonacci NLFSR and show how to compute it. Section6concludesthepaperanddiscussesopenproblems. ... ... ... f n−1 f n−2 ... f 0 n−1 n−2 0 output Fig.2.AGaloistypeofNLFSR. 2 Preliminaries Inthissection,wedescribebasicdefinitionsandnotationusedinthesequel. Thealgebraicnormalform (ANF) of a Booleanfunction f :{0,1}n→{0,1}is a polynomialinGF(2)oftype 2n−1 f(x ,...,x )= (cid:229) c ·xi0·xi1·...·xin−1, 0 n−1 i 0 1 n−1 i=0 wherec ∈{0,1}and(i i ...i )isthebinaryexpansionofiwithi beingtheleast i 0 1 n−1 n−1 significantbit. Thedependenceset(orsupportset)ofaBooleanfunction f isdefinedby dep(f)={i| f| 6= f| }, xi=0 xi=1 where f| = f(x ,...,x ,j,x ,...,x )for j∈{0,1}. xi=j 0 i−1 i+1 n−1 Leta (f)(a (f))bethesmallest(largest)indexofvariablesindep(f). min max Let f :{0,1}n→{0,1}beafeedbackfunctionofthebiti,i∈{0,1,...,n−1},of i anNLFSR.AllresultsinthispaperasderivedforNLFSRswhosefeedbackfunctions aresingularfunctionsoftype f =x ⊕g(x ,...,x ), (1) i i+1 i 0 n−1 whereg :{0,1}n−1→{0,1},i+16∈dep(g),andthesign“+”ismodulon.Singularity i i guarantees that the state transition graph of an NLFSR is “branchless”, i.e. that each statebelongstooneofthestatecycles[9]. Let s(t) denote the value of the bit i at time t. The sequence of states an n-bit i NLFSR with the singular feedbackfunctionscan be described by a system of n non- linearequationsoftype: s (t)=s (t−1)⊕g (s (t−1),s (t−1),...,s (t−1)) n−1 0 n−1 1 2 n−1 s (t)=s (t−1)⊕g (s (t−1),s (t−1),...,s (t−1)) n−2 n−1 n−2 0 1 n−2 (2) ... s (t)=s (t−1)⊕g (s (t−1),s (t−1),...,s (t−1)). 0 1 0 0 2 n−1 2 1 0 2 1 0 Fig.3.TheFibonacciLFSR(left)andtheGaloisLFSR(right)forthegeneratorpoly- nomialx3+x+1. 3 A Condition forExistence ofa Non-Linear Recurrence In this section, we formulate a condition for existence of a non-linear recurrence de- scribingtheoutputsequenceofanNLFSR.First,weintroducesomedefinitionswhich arenecessaryforthepresentationofmainresults. Definition1. Two NLFSRs are equivalentif there are initial states, possibly different foreachNLFSR,fromwhichtheygeneratethesameoutputsequences. Definition2. ThefeedbackgraphofanNLFSRhasnverticesv ,...,v representing 0 n−1 thebits0,...,n−1.Thereisanedgefromv tov ifi∈dep(f ),i,j∈{0,1,...,n−1}. i j j Definition3. Theterminalbitofann-bitNLFSRisthebitwiththelargestindexiwhich satisfiesthefollowingcondition:Forallbits jsuchthati> j≥0,thefeedbackfunction f isoftype f =x ,i,j∈{0,1,...,n−1}. j j j+1 Definition4. Theoperationsubstitution,denotedbysub(v,v ),isdefinedforanyver- i j tex v which hasa uniquepredecessorv . Thesubstitutionsub(v,v )removesv from i j i j i thefeedbackgraphand,foreachsuccessorv ofv,replacestheedge(v,v )byanedge k i i k (v ,v ),i,j,k∈{0,...,n−1}. j k Definition5. GivenafeedbackgraphG, thereducedfeedbackgraphofG isagraph obtained by subsequently applyingthe substitution to all vertices of G with the input degree1. Sincesubstitutionmergesavertexwithitsuniquepredecessor,theorderofapplying thesubstitutiondoesnotinfluencetheresultingreducedfeedbackgraph,i.e.itisunique foragivenG. Lemma1. Ifthefeedbackgraphofann-bitNLFSRcanbereducedtoasinglevertex v,i∈{0,1,...,n−1},thenthereexistanon-linearrecurrencedescribingthesequence i ofvaluesofthebitioftype 2n−1 n−1 si(t)= (cid:229) (aj·(cid:213) sjk(t−n+k)), (3) j=0 k=0 wherea ∈{0,1},(j j ...j )isthebinaryexpansionof jwith j beingtheleast j 0 1 n−1 n−1 significantbit,andsjk(t−n+k)isdefinedasfollows s(t−n+k),fori=1, sjk(t−n+k)= (cid:26)1, fori=0. 3 3 3 0 2 2 3 2 1 1 (a) (b) (c) (d) Fig.4.ReductionstepsforthefeedbackgraphoftheFibonacciNLFSRfromtheexam- ple:(a)initialgraph;(b)aftersub(v ,v );(c)aftersub(v ,v );(d)aftersub(v ,v ). 0 1 1 2 2 3 Proof:Letv beavertexofthefeedbackgraphwhichhasauniquepredecessorv andm i j successorsv ,...,v , j,k ∈{0,1,...,n−1},p∈{0,1,...,m}.ByDf.2,thisimplies k1 km p thats(t)=s (t−1)and,foreach p,s (t)dependsons(t−1). i j kp i The substitution sub(v,v ) is equivalent to replacing the variable s(t−1) in the i j i equationofeachs (t)bys (t−2).Thisreducesthenumberofvariablesintheequa- kp j tions(2)byoneandreducesthenumberofequationsbyone. IfthefeedbackgraphofanNLFSRcanbereducedtoasinglevertex,sayv ,thenthe r substitutioncanbeappliedn−1times.So,thenumberofvariablesintheequations(2) canbereducedtoasinglevariableandthenumberofequationscanbereducedtoasin- gleequation.Thisequationcorrespondstothenon-linearrecurrencerelationdescribing thesequenceofstatesofthebitroftheNLFSR. 2 Example1:Asanexample,considera4-bitFibonacciNLFSRwiththefeedbackfunc- tion f =x ⊕x ⊕x ⊕x x . Itssequenceofstatescanbedescribedbythefollowing 3 0 1 2 1 3 equations: s (t)=s (t−1)⊕s (t−1)⊕s (t−1)⊕s (t−1)s (t−1), 3 0 1 2 1 3 s2(t)=s3(t−1), s1(t)=s2(t−1), s (t)=s (t−1). 0 1 ThisNLFSRgeneratesthefollowingoutputsequencewiththeperiod15: 111011000101001... ThefeedbackgraphofthisNLFSRisshowninFigure4(a).Itcanbereducedtoa singlevertexasfollows: 1. sub(v ,v )reducesthegraphtoFigure4(b).Thisisequivalenttosubstitutings (t) 0 1 0 bys (t−1)intotheequationofs (t): 1 3 s (t)=s (t−2)⊕s (t−1)⊕s (t−1)⊕s (t−1)s (t−1). 3 1 1 2 1 3 2. sub(v ,v )reducesthegraphtoFigure4(c).Thisisequivalenttosubstitutings (t) 1 2 1 bys (t−1)intotheequationofs (t): 2 3 s (t)=s (t−3)⊕s (t−2)⊕s (t−1)⊕s (t−2)s (t−1). 3 2 2 2 2 3 3. sub(v ,v )reducesthegraphtoFigure4(d).Thisisequivalenttosubstitutings (t) 2 3 2 bys (t−1)intotheequationofs (t): 3 3 s (t)=s (t−4)⊕s (t−3)⊕s (t−2)⊕s (t−3)s (t−1). 3 3 3 3 3 3 This gives us a non-linear recurrence describing the sequence of values of the bit 3. Sinceotherbitsrepeatthecontentofthe3rdbit,therecurrenceisidenticalforallbits, andthusfortheoutputoftheNLFSR. Itis easy to see thatthe feedbackgraphof a FibonacciNLFSR can always be re- duced to a single vertex v . Therefore,for a FibonacciNLFSR, a non-linearrecur- n−1 renceoftype(3)alwaysexists.Itscoefficientsa,i∈{0,1,...,2n−1},areequaltothe i coefficientsc oftheANFofthefeedbackfunction f . i n−1 ForGaloisNLFSRs,anon-linearrecurrenceoftype(3)mayormaynotexist.Ifit exists,itmaybedifferentfordifferentbits. Example2:Asanotherexample,consideraGaloisNLFSRwiththefollowingfeedback functions: f =x ⊕x x , 3 0 1 3 f =x , 2 3 f =x , 1 2 f =x ⊕x ⊕x . 0 1 2 3 Itsfeedbackgraphcanbereducedtothevertexv ,givingusthefollowingrecurrence: 3 s (t)=s (t−4)⊕s (t−3)⊕s (t−2)⊕s (t−3)s (t−1). 3 3 3 3 3 3 This recurrenceis the same as the one of the FibonacciNLFSR fromthe Example1. Bits2 and1repeatthesamerecurrenceasthebit3,however,thevalueofthebit0 is theXORofthebits1,2and3.Thus,itssequenceofvaluesdiffersfromtheoneofthe 3rd bit. Therefore, the output sequence of this Galois NLFSR, is different the output sequenceoftheFibonacciNLFSRfromtheExample1. 4 A Transformationfrom the Fibonacci to the GaloisNLFSRs Inthissection,weshowhowtotransformaFibonacciNLFSRintoanequivalentGalois NLFSR. LetP denotethe set of all product-termsof the ANF of a function f :{0,1}n→ f {0,1}. Given an ANF product-term p∈P , the notation p means that the index of f −k eachvariablex of pischangedtox ,where“−”ismodulon. i i−k Forexample,ifn=4,and p=x x x then 0 1 3 p =x x x , p =x x x , p =x x x . −1 3 0 2 −2 2 3 1 −3 1 2 0 p Definition6. Theoperationshifting,denotedby f → f , p∈P ,a,b∈{0,1,...,n− a b fa 1}, b<a, removes the product-term p from the ANF of the function f and addsthe a product-term p totheANFofthefunction f . −(a−b) b Aswecanseeformthedefinition,shiftingsubtracts(a−b)fromtheindexofeach variableintheshiftedproduct-term(modulon).Forexample,ifinitially f =x ⊕x x 3 0 1 3 f =x 2 3 then,after f −x1→x3 f ,weget 3 2 f =x 3 0 f =x ⊕x x . 2 3 0 2 Definition7. Ann-bitNLFSRisuniformif: (a) allitsfeedbackfunctionsareoftype(1),and (b) forallitsbitsisuchthatn−1≥i>t ,thefollowingconditionholds: a (g)≤t , (4) max i wheret istheterminalbitoftheNLFSR,t ∈{0,1,...,n−1}. NotethatanyFibonacciNLFSRisuniform. Lemma2. IfanNLFSRisuniform,thenitsfeedbackgraphcanbereducedtoasingle vertex. Proof:SupposethatanNLFSRN isuniform.Weshowthatthenwecanalwayreduce thefeedbackgraphofN tothevertexvt correspondingtotheterminalbitt ofN. By Df. 3, for i∈{0,1,...,t −1}, each vertex v of the feedback graph has input i degree1.So, foreachi∈{0,1,...,t −1}, wecan applythe substitutionsup(v,v ) i i+1 to removev fromthe feedbackgraph,and,foreach successor v of v, to replacethe i k i theedge(vi,vk)byanedge(vt ,vk).Therefore,byapplyingasequenceofsubstitutions sup(v0,v1),sup(v1,v2),...,sup(vt −1,vt )wecanremovev0,v1,...,vt −1fromthefeed- backgraphandchangetheoriginofalloutgoingedgesofv0,v1,...,vt −1tovt . Sincethecondition(4)holdsandtheoriginofalloutgoingedgesofv0,v1,...,vt −1 ischangedtovt ,eachoftheverticesvifori∈{t +1,t +2,...,n−1}hasnomorethan twoincomingedges:onefromvi+1andonefromvt .Thisimpliesthateachofthemhas theoutputdegree1. Clearly, vn−1 has only one incoming edge, from vt . By applying the substitution sup(vn−1,vt ),wecanremovevn−1andreplacetheedge(vn−1,vn−2)bytheedge(vt ,vn−2). This make the input degree of v one. Continuing similarly with the sequence of n−2 substitutionssup(vn−2,vt ),...,sup(vt +1,vt )weremovevn−2,...,vt +1 andreducethe graphtoonevertex,vt . 2 Theaboveconditionissufficient,butnotnecessary.Forexample,theNLFSRfrom theExample2isnotuniform,butitcanbereducedtoasinglevertex. Thefollowingtheoremisthemainresultofthepaper.Itpresentsasufficientcon- ditionforequivalenceoftwoNLFSRs.Note,thatitisformulatedforshiftingsonsub- functions g of the singular feedback functions f (see the expression 1), because the i i variablex shouldnotbeshiftedinordertopreservetheregisterstructure. i+1 p Theorem1. GivenauniformNLFSR,ashiftingg →g ,a,b∈{0,1,...,n−1},b<a, a b P⊆P ,preservestheequivalenceifthetransformedNLFSRisuniformaswell. ga Proof:SeeAppendix. The condition of the Theorem 1 is sufficient, but not necessary. For example, the followingNLFSR canbe obtainedfromthe NLFSRfromthe Example1 byapplying theshifting f −x1→x3 f , f −x→1 f and f −x→2 f : 3 0 3 1 3 1 f =x , 3 0 f =x , 2 3 f =x ⊕x ⊕x , 1 2 0 3 f =x ⊕x x . 0 1 0 2 ThisNLFSRisnotuniform,however,itisequivalenttotheNLFSRfromtheExample 1. Next,we formulatea conditionwhichshouldbe satisfied inorderto obtaina uni- formNLFSRaftershifting. p Theorem2. GivenauniformNLFSRN,anNLFSRobtainedfromNbyashiftingg → a g ,a,b∈{0,1,...,n−1},b<a,P⊆P ,isuniformonlyif b ga b≥a−a (p). (5) min Proof:Ifb<a−a (p),thena (p)<a−b.Therefore,aftertheshiftingg →p g , min min a b a (p)becomesa (p)+n−(a−b)=a (p)+b+(n−a).ByDf.6,b<a,thus min min min aisalwaysgreaterthan0.So,foranya∈{1,2,...,n−1},aftershiftingthefeedback functiong containsa product-termwhoseindexisgreaterthanb byn−a.Sincethe b terminalbitoftheNLFSRissmallerorequaltob,thecondition(4)ofDf.7isviolated. 2 Often an equivalentGalois NLFSR can be obtained from a FibonacciNLFSR by shifting product-termsone-by-one.Sometimes, however,morethan one product-term has to be shifted in order to preserve the equivalence. For example, if the feedback function g has more than one product-term containing the variable x , then all n−1 n−1 suchproduct-termshavetobeshifted.TheLemmabelowdescribestwocasesinwhich theproduct-termscanbeshiftedone-by-one. Lemma3. GivenauniformNLFSRwiththeterminalbitt andasiftingg →p g ,a,b∈ a b {0,1,...,n−1},b<a,P⊆P ,thefollowingholds: ga (a) Ifb≥t ,theng →p g preservestheequivalenceforany p∈P whichsatisfiesthe a b ga condition(5). (b) Ifb<t anda (g)≤bforalli∈{n−1,n−2,...,b},theng →p g preserves max i a b theequivalenceforany p∈P whichsatisfiesthecondition(5). ga Proof:Case(a):ByDf.6,aftertheshiftinga (p)becomesa (p)−(a−b).Since min min thecondition(5)issatisfied,a (p)≥a−b,i.e.aftershiftingtheindexesofvariables min of p are reduced by some value between 1 and a (p). Therefore,after the shifting, min none of the product-termsof p violates the condition (4). Since the initial NLFSR is uniform and the terminal bit is not changed, the transformed NLFSR is uniform as well,andtherefore,byTheorem1,theequivalenceispreserved. Case (b): Similarly to the case (a) we can show that, after the shifting, none of the product-termsofpviolatesthecondition(4).Sincea (g)≤bforallibyassumption, max i the transformed NLFSR is uniform and therefore, by Theorem 1, the equivalence is preserved. 2 TheaboveLemmaimpliesthat,foranyFibonacciNLFSR,shiftingcanalwaysre- duce the index of the initial terminal bit n−1 at least by 1. It reduces the index of the terminalbitexactlyby1if g ofthe FibonacciNLFSR containsa productwith n−1 a (g)=n−1anda (g )=1.Thesmallerthedifferencebetweena (g ) max i min n−1 max n−1 anda (g ),themoretheindexoftheinitialterminalbitcanbereduced. min n−1 5 Fully Shifted GaloisNLFSRs Usually,therearemultiplewaystotransformaFibonacciNLFSRintoaGaloisNLFSR. Next,wedefinea“fullyshifted”GaloisNLFSRwhichisuniqueforagivenFibonacci NLFSRandshowhowtocomputeit. Definition8. An NLFSR is fully shifted if no product-term of any function g can be i shifted to a function g with the index j<i withoutviolating the condition(4), i,j∈ j {0,1,...,n−1}. In the linear case, a fully shifted NLFSR reduces to a Galois LFSR, i.e. it is a generalizationoftheGaloisLFSR.NotethatthisisnotthecaseforNLFSRswhichare notfullyshifted. Algorithm 1: Given a uniform n-bit FibonacciNLFSR N, the fully shifted Galois NLFSRNˆ whichisequivalenttoN isobtainedasfollows. First,theterminalbitt ofNˆ iscomputedas: t = max (a (p)−a (p)), max min ∀p∈P (6) gn−1 with|p|>1 where|p|denotesthenumberofvariablesintheproduct-termp. Then,eachproduct-termp∈Pgn−1witha min(p)≤(n−1)−t isshiftedtogn−1−a min(p): p gn−1−→gn−1−a min(p). andeachproduct-termp∈Pgn−1 witha min(p)>(n−1)−t isshiftedtogt : p gn−1−→gt . Theorem3. Algorithm1correctlycomputesthefullyshiftedGaloisNLFSRforagiven FibonacciNLFSR. Proof:Foreachproduct psuchthata (p)≤(n−1)−t ,theindexesarereducesby min a (p). So, after the shifting, the smallest indexbecomes0 and the largestbecomes min a (p)−a (p).Byequation(6),a (p)−a (p)≤t . max min max min For each product p such that a (p)>(n−1)−t , the indexes are reduces by min (n−1)−t . Since a (p)<a (p)≤n−1, the largest index after the shifting is min max 0<a (p)−((n−1)−t )≤t . Since(n−1)−t <a (p)<a (p),thesmallest max min max indexaftertheshiftingis0<a (p)−((n−1)−t )<t . min So,thetransformedNLFSRNˆ isuniformandtherefore,byTheorem1,twoNLFSRs areequivalent.ItremainstoprovethatNˆ isfullyshifted. ByDf6,indexofeachvariableof pisreducedbya (p)aftertheshifting.There- min fore, for each product-term p∈P such that a (p)≤t , p after the shifting con- gn−1 min tainsa variablex0. If p isshiftedfurtherfromgn−1−a min(p) to gn−1−a min(p)−i forsome 1≤i≤n−1−a (p), the indexof x increasesto n−i.For everyvalueof iin the min 0 range1≤i≤n−1−a (p),n−i>n−1−a (p),sothecondition(4)isviolated min min andtheresultingNLFSRisnotequivalenttotheinitialFibonacciNLFSR. Eachproduct-term p∈P suchthata (p)>t isshiftedtotheterminalbitt . gn−1 min If pisshiftedtosomei<t ,then,accordingtotheequation(6),thereisaproduct-term p∗ which has a (p∗)>i after shifting. Thus, the condition (4) is violated and the max resultingNLFSRisnotequivalenttotheinitialFibonacciNLFSR. 2 Example4: Asan example,considerthe following32-bitFibonacciNLFSR which is usedintheNLFSR-basedstreamcipherfrom[6]: f = x ⊕x ⊕x ⊕x ⊕x ⊕x ⊕x ⊕x ⊕x ⊕x x ⊕ x x ⊕x x x 31 0 2 6 7 12 17 20 27 30 3 9 12 15 4 5 16 Its correspondingfully shifted Galois NLFSR has the terminalbit t =12 and the followingfeedbackfunctions: f =x 31 0 f =x ⊕x 29 30 0 f =x ⊕x x 28 29 0 6 f =x ⊕x x x 27 28 0 1 12 f =x ⊕x 25 26 0 f =x ⊕x 24 25 0 f =x ⊕x ⊕x x 19 20 0 0 3 f =x ⊕x 14 15 0 f =x ⊕x ⊕x ⊕x 12 13 1 8 11