loading

Logout succeed

Logout succeed. See you again!

ebook img

An Inequality Concerning the Smarandache Function PDF

pages2 Pages
release year1998
file size0.08 MB

Preview An Inequality Concerning the Smarandache Function

Smarandache Notions Journal, Vol. 9, No.1-2-3, 1998, pp. 124-125. Maoh:.::.a Le Zhanjiang Normal College, Zhanjang, Guangdong, ?R.China Abstract. For any positive integer n, let S(n) denote the S~arandache function of n. In this paper Ne prove that S(m)+S(n). S(~n)~ Let N be the set of a~~ posicive integers. For any posicive integer n, let S(n) denote the Smarandache function of n. By ~2~, '.f'le ::ave : -: \ S(nj= min{~!kE N, Dik!}. \ - I ~ecent:y, Jozsef[l] proved that (2) S(mn)~ rnS(n), m,n E N. In this paper we give a considerable improvement for the ".lpper bound (2). We prove the following result. Theorem. For any positive integers m,n, we have S(m)+S(n). S(rnn)~ Proof. a=S(m) and b=5(n) Then we have ~et ,.,Ib' l ... j :, ~et x be a positive integer with x ~ 0, and :et x (x-I) a! x be a binomial coeficient. It is a wel: k~own fact that a a positive integer. 50 we r-:ave ~s 1,J-;' a ;' :: _x (x-1.J. . I\ ••• (\ x-a·T 1_ \/ , by ! 4- \ . ::..:rther, since m!a!, we get from (5) , / (6 ; mix(x-1) ... (x-a+l), fer any positive integer x Nith x ~ a. ?u~ x=a+b. We see from (3) and (6) that (i \ I. ! i ?ererences 1. S.Jozsef,On certain inegualites involving t~e Smarandac~e function, Smarandache No~ce J. 7(l996), No.1-3, 3-6. 2. ? Smarandache "A function in the nurrber t.heory"," Smarandac:-.e fU:1ction J". 1(1990), No.1, 3-17. 125

See more

The list of books you might like