loading

Logout succeed

Logout succeed. See you again!

ebook img

Another observation about operator compressions PDF

pages75 Pages
release year2010
file size0.51 MB
languageEnglish

Preview Another observation about operator compressions

Another observation about operator compressions Elizabeth Meckes jointworkwithMarkMeckes CaseWesternReserveUniversity Let M be an n×n Hermitian matrix, and let 1 (cid:28) k ≤ n. Then the empirical spectral distributions of most k ×k principal submatrices of M are about the same. 1.0 ll l l ll 0.8 llll ll 0.6 llll ll 0.4 llll ll 0.2 llll ll ll 0.0 0 2 4 6 8 10 An observation about submatrices by Chatterjee and Ledoux 1.0 ll l l ll 0.8 llll ll 0.6 llll ll 0.4 llll ll 0.2 llll ll ll 0.0 0 2 4 6 8 10 An observation about submatrices by Chatterjee and Ledoux Let M be an n×n Hermitian matrix, and let 1 (cid:28) k ≤ n. Then the empirical spectral distributions of most k ×k principal submatrices of M are about the same. An observation about submatrices by Chatterjee and Ledoux Let M be an n×n Hermitian matrix, and let 1 (cid:28) k ≤ n. Then the empirical spectral distributions of most k ×k principal submatrices of M are about the same. 1.0 ll l l ll 0.8 llll ll 0.6 llll ll 0.4 llll ll 0.2 llll ll ll 0.0 0 2 4 6 8 10 Theorem (Chatterjee-Ledoux) For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Let F(x) := EF (x). Then for r > 0, A √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k More formally: For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Let F(x) := EF (x). Then for r > 0, A √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k More formally: Theorem (Chatterjee-Ledoux) Let F(x) := EF (x). Then for r > 0, A √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k More formally: Theorem (Chatterjee-Ledoux) For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Then for r > 0, √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k More formally: Theorem (Chatterjee-Ledoux) For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Let F(x) := EF (x). A and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k More formally: Theorem (Chatterjee-Ledoux) For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Let F(x) := EF (x). Then for r > 0, A √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ More formally: Theorem (Chatterjee-Ledoux) For M given, let A be chosen uniformly at random from all k ×k principal submatrices. Let F denote the empirical distribution A function of A; that is, 1(cid:12) (cid:12) FA(x) = (cid:12){j : λj(A) ≤ x}(cid:12). k Let F(x) := EF (x). Then for r > 0, A √ √ P[(cid:107)F −F(cid:107) ≥ k−1/2+r] ≤ 12 ke−r k/8 A ∞ and √ 13+ 8log(k) E(cid:107)F −F(cid:107) ≤ √ . A ∞ k

See more

The list of books you might like