Logout succeed
Logout succeed. See you again!

Applications of Random Matrices in Spectral Computations and Machine Learning PDF
Preview Applications of Random Matrices in Spectral Computations and Machine Learning
Applications of Random Matrices in Spectral Computations and Machine Learning Dimitris Achlioptas UC Santa Cruz This talk Viewpoint: use randomness to “transform” the data This talk Viewpoint: use randomness to “transform” the data Random Projections (cid:122) Fast Spectral Computations (cid:122) Sampling in Kernel PCA (cid:122) The Setting The Setting n d n d n × d The Setting n d n d n × d The Setting n d n d n × d P Output: AP The Johnson-Lindenstrauss lemma The Johnson-Lindenstrauss lemma Algorithm: Projecting onto a random hyperplane (subspace) of dimension succeeds with probability Applications Approximation algorithms (cid:122) [Charikar’02] Hardness of approximation (cid:122) [Trevisan ’97] Learning mixtures of Gaussians (cid:122) [Arora, Kannan ‘01] Approximate nearest-neighbors (cid:122) [Kleinberg ’97] Data-stream computations (cid:122) [Alon et al. ‘99, Indyk ‘00] Min-cost clustering (cid:122) [Schulman ‘00] …. (cid:122) Information Retrieval (LSI) (cid:122) [Papadimitriou et al. ‘97]