Logout succeed
Logout succeed. See you again!

Arithmetic on abelian varieties and related topics PDF
Preview Arithmetic on abelian varieties and related topics
Arithmetic on abelian varieties and related topics 2014/03/03—Neuchâtel DamienR ÉquipeLFANT,InriaBordeauxSud-Ouest February27,2014 Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Discrete logarithm Definition(DLP) LetG =〈g〉beacyclicgroupofprimeorder.Letx(cid:0)(cid:78)andh=gx.The discretelogarithmlog (h)isx. g (cid:112) Exponentiation:O(logp).DLP:O(cid:101)( p)(inagenericgroup).Sowecan usetheDLPforpublickeycryptography. ⇒ Wewanttofindsecuregroupswithefficientadditionlawandcompact representation. Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Elliptic curves Definition(chark(cid:54)=2,3) Anellipticcurveisaplanecurvewithequation y2=x3+ax+b 4a3+27b2(cid:54)=0. 2 R 1 Exponentiation: Q ((cid:96),P)(cid:55)→(cid:96)P P 0 -1.5 -1 -0.5 0 0.5 1 1.5 2 Discretelogarithm: -1 (P,(cid:96)P)(cid:55)→(cid:96) -R -2 Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Scalar multiplication on an elliptic curve 3 2 1 P 0 2P -2 -1 0 1 2 3 -2P -1 -2 -3 -4 Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Scalar multiplication on an elliptic curve 3 2 1 -3P P 0 2P -2 -1 0 1 2 3 -2P 3P -1 -2 -3 -4 Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Scalar multiplication on an elliptic curve 3 2 1 -3P P 0 2P -2 -1 0 -5P 1 2 3 5P -2P 3P -1 -2 -3 -4 Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs ECC (Elliptic curve cryptography) Example(NIST-p-256) E ellipticcurvey2=x3−3x+ 41058363725152142129326129780047268409114441015993725554835256314039467401291over (cid:70) 115792089210356248762697446949407573530086143415290314195533631308867097853951 Publickey: P=(48439561293906451759052585252797914202762949526041747995844080717082404635286, 36134250956749795798585127919587881956611106672985015071877198253568414405109), Q=(76028141830806192577282777898750452406210805147329580134802140726480409897389, 85583728422624684878257214555223946135008937421540868848199576276874939903729) Privatekey:(cid:96)suchthatQ=(cid:96)P. UsedbytheNSA; UsedinEuropeansbiometricpassports. Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Pairing-based cryptography Definition Apairingisabilinearapplicatione :G ×G →G . 1 1 2 Example Ifthepairinge canbecomputedeasily,thedifficultyoftheDLPinG 1 reducestothedifficultyoftheDLPinG . 2 ⇒ MOVattacksonsupersingularellipticcurves. OnewaytripartiteDiffie–Hellman[Jou00]. Identity-basedcryptography[BF03]. Shortsignature[BLS04]. Self-blindablecredentialcertificates[Ver01]. Attributebasedcryptography[SW05]. Broadcastencryption[GPS+06]. Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Jacobian of curves C asmoothirreducibleprojectivecurveofgenusg. Divisor:formalsumD=(cid:80)n P, P (cid:0)C(k). i i i degD=(cid:80)n . i Principaldivisor:(cid:80) v (f).P; f (cid:0)k(C). P(cid:0)C(k) P JacobianofC =Divisorsofdegree0moduloprincipaldivisors +Galoisaction =Abelianvarietyofdimensiong. DivisorclassofadivisorD(cid:0)Jac(C)isgenericallyrepresentedbyasum ofg points. Cryptography CurvesandJacobians Abelianvarieties Arithmetic Pairings Isogenies Isogenygraphs Example of Jacobians Dimension2:AdditionlawontheJacobianofanhyperellipticcurveof genus2: y2=f(x),degf =5. D=P1+P2−2∞ D′=Q1+Q2−2∞ b Q2 Q1 b b b b P2 b b P1b