loading

Logout succeed

Logout succeed. See you again!

ebook img

Automatic Control Systems, 8th ed. (Solutions Manual) PDF

pages378 Pages
release year2002
file size9.85 MB
languageEnglish

Preview Automatic Control Systems, 8th ed. (Solutions Manual)

Chapter 2 MATHEMATICAL FOUNDATION 2-1 (a) Poles: s = 0, 0, - 1, - 10; (b) Poles: s = - 2, - 2; - ¥ ¥ ¥ Zeros: s = 2, , , . Zeros: s = 0. - The pole and zero at s = 1 cancel each other. (c) Poles: s = 0, - 1 + j, - 1 - j; (d) Poles: s = 0, - 1, - 2, ¥ . - Zeros: s = 2. 2-2 (a) (b) (c) G(s)= (s+55)2 G(s) = (s24+s4) +s+12 G(s)= s2 +44s +8 (d) (e) ¥ = 1 =(cid:229) kT(s+5) = 1 G(s) G(s) e 2 + - - T(s+5) s 4 k=0 1 e 2-3 (a) gt(u)(tu)=tut2uss t(1--+)--- 2+(2)s 2(3) s L Gs(e)12= 1ss(e -+2 e-- se 2-+ - 2s= 3s L) (11-+e--ss) gtu(tu)(t)u=t 2 (1--+)-£(2£) t 0 2 T ss s Gse(e)12= 1( -+= --ess - 12 ) 1- (s )2 T s s 1 g(t)=(cid:229) ¥ g (t - 2k)u (t - 2k) G(s)=(cid:229) ¥ 1(1- e- s)2e- 2ks = 1- e- s T s + - s k=0 k=0 s s(1 e ) (b) gt(t)utt=u2---+tt(-----u)t4ts(us0+.5t) (0.5)4(1) (1s)4(1.5) (1.5) s L Gs()e1e2=2-+s-+2s22(0e.52=e -- 0.51ss.5 - s L) 2((11-+e--0.5ss)) g (t) =2tu (t)- 4(t - 0.5)u (t - 0.5) +2(t - 1)u (t - 1) 0£ t £ 1 T s s s Gse(e)12=-+2 ( = e-- 0.50s.s5- 1 ) - 2 ( s )2 T 2 2 s s gt(g)()(=)t--=k((cid:229))u-¥ tkGse 1 = e (cid:229) ¥ 2 ( - 0.5sk)s2 - 2((1- e- 0.5s)) k=0 T s k=0ss220.5 e 1+ - s 2-4 = + - - - - - - - - + - - + - g(t) (t 1)u (t) (t 1)u (t 1) 2u (t 1) (t 2)u (t 2) (t 3)u (t 3) u (t 3) s s s s s s Gs()e11=- 21ee(e-++ -es - --- 23sss+- )s 1( 3 ) 2 s s 2-5 (a) Taking the Laplace transform of the differential equation, we get 1 1 1 1 1 2 + + = = = + - (s 5s 4)F(s) F(s) + + + + + + + s 2 (s 1)( s 2)( s 4) 6(s 4) 3(s 1) 2( s 2) = 1 - 4t +1 - t - 1 - 2t ‡ f (t) e e e t 0 6 3 2 (b) sX (s)- x (0)= X (s) x (0)=1 sX (s)- x (0) =- 2X (s)- 3X (s)+1 x (0) =0 1 1 2 1 2 2 1 2 2 s Solving for X(s) and X(s), we have 1 2 2 + + s 3s 1 1 1 1 = = + - X (s) 1 + + + + s(s 1)( s 2) 2s s 1 2( s 2) - - 1 1 1 X (s) = = + 2 + + + + (s 1)(s 2) s 1 s 2 Taking the inverse Laplace transform on both sides of the last equation, we get = + - t - - 2t ‡ =- - t + - 2t ‡ x (t) 0.5 e 0.5e t 0 x (t) e e t 0 1 2 2 2-6 (a) = 1 - 1 + 1 = 1 - 1 - 2t +1 - 3t ‡ G(s) g(t) e e t 0 + + 3s 2(s 2) 3(s 3) 3 2 3 (b) - = 2.5 + 5 + 2.5 =- - t + - t + - 3t ‡ G(s) g(t) 2.5e 5te 2.5e t 0 + + 2 + s 1 (s 1) s 3 (c) ( ) Gs(e)(g)t5e=0t20530020--=c3-o0s220(1)5tsins--- 2+(1) --- s- [ (1t) ]u (t1)- ss +1s 2 +4 s (d) - G(s)= 1 - s 1 = 1+ 1 - s Taking the inverse Laplace transform, 2 + + 2 + + 2 + + s s s 2 s s s 2 s s 2 gt(e)tte=1t+1+.0-=6+9sin1.-3t02.53ots0[i.n51.32369.311-.44(7sin1.3 )] - t ( 23cos1.323 ) t ‡ 0 (e) g(t)=0.5t2e- t t ‡ 0 2-7 Ø - 1200 0 øØ ø Œ œŒ œ Ø u (t)ø AB=-=Œ 02310( ) œŒ uœ = t Œ 1 œ º u (tß) Œº - 1 - 31- 0 œŒßº 1 œß 2 2-8 (a) (b) Ys()3 1 s + Y()s 5 = = Rs()25 s36++s 2 + s Rs(s)1s0 s4 ++5+2 (c) (d) Ys(s)(2s) + Ys()1 2 +e - s = = Rs(s)1ss02 4s3+ 22++ + Rs(s)2 s 2 +5 + 3 4 5 6 7 8 9

See more

The list of books you might like