Logout succeed
Logout succeed. See you again!

Axiomatic geometry PDF
Preview Axiomatic geometry
EDITORIAL COMMITTEE Paul J. Sally, Jr. (Chair) Joseph Silverman Francis Su Susan Tolman For additional informationand updates on this book, visit www.ams.org/bookpages/amstext-21 Library of Congress Cataloging-in-Publication Data Lee,JohnM.,1950– Axiomaticgeometry/JohnM.Lee pagescm. —(Pureandappliedundergraduatetexts;volume21) Includesbibliographicalreferencesandindex. ISBN978-0-8218-8478-2(alk.paper) 1.Axioms. 2.Geometry. I.Title. Contents Preface....................................................................... xi Chapter1. Euclid............................................................ 1 ReadingEuclid............................................................. 2 AfterEuclid................................................................ 8 TheDiscoveryofNon-EuclideanGeometry................................... 10 GapsinEuclid’sArguments................................................. 13 ModernAxiomSystems..................................................... 20 Exercises.................................................................. 21 Chapter2. IncidenceGeometry ............................................... 23 AxiomaticSystems......................................................... 23 TheAxiomsofIncidenceGeometry.......................................... 24 InterpretationsandModelsofIncidenceGeometry............................. 26 SomeNonmodels........................................................... 30 ConsistencyandIndependence............................................... 32 SomeInfiniteModels....................................................... 33 ParallelPostulates.......................................................... 37 TheoremsinIncidenceGeometry ............................................ 42 Exercises.................................................................. 50 Chapter3. AxiomsforPlaneGeometry........................................ 53 PointsandLines............................................................ 54 Distance................................................................... 56 Segments.................................................................. 64 v vi Contents Rays...................................................................... 71 PlaneSeparation............................................................ 76 ConvexSets................................................................ 80 Exercises.................................................................. 81 Chapter4. Angles............................................................ 83 Angles..................................................................... 83 BetweennessofRays........................................................ 89 TheInteriorofanAngle..................................................... 94 Exercises.................................................................. 101 Chapter5. Triangles ......................................................... 103 Definitions.................................................................103 IntersectionsofLinesandTriangles.......................................... 105 CongruentTriangles........................................................ 106 Inequalities................................................................ 113 MoreCongruenceTheorems.................................................119 Exercises.................................................................. 122 Chapter6. ModelsofNeutralGeometry........................................123 TheCartesianModel........................................................124 ThePoincare´ DiskModel....................................................132 SomeNonmodels...........................................................135 IndependenceoftheNeutralGeometryPostulates..............................139 Exercises.................................................................. 140 Chapter7. PerpendicularandParallelLines.................................... 141 PerpendicularLines.........................................................141 ParallelLines .............................................................. 149 Exercises.................................................................. 154 Chapter8. Polygons ......................................................... 155 Polygons .................................................................. 155 ConvexPolygons........................................................... 157 NonconvexPolygons........................................................166 Exercises.................................................................. 174 Chapter9. Quadrilaterals..................................................... 175 ConvexQuadrilaterals.......................................................175 Parallelograms............................................................. 180 Exercises.................................................................. 183 Contents vii Chapter10. TheEuclideanParallelPostulate................................... 185 Angle-SumTheorems.......................................................189 QuadrilateralsinEuclideanGeometry........................................ 194 Exercises.................................................................. 196 Chapter11. Area............................................................ 199 PolygonalRegions..........................................................199 AdmissibleDecompositions................................................. 201 AreaFormulas............................................................. 204 IstheAreaPostulateIndependentoftheOthers?...............................209 Exercises.................................................................. 210 Chapter12. Similarity........................................................213 Definitions.................................................................213 TheSide-SplitterTheorem...................................................214 TriangleSimilarityTheorems................................................ 216 ProportionTheorems........................................................219 CollinearityandConcurrenceTheorems...................................... 221 TheGoldenRatio...........................................................224 PerimetersandAreasofSimilarFigures...................................... 226 Exercises.................................................................. 227 Chapter13. RightTriangles...................................................229 ThePythagoreanTheorem...................................................229 ApplicationsofthePythagoreanTheorem.....................................233 SimilarityRelationsinRightTriangles........................................236 Trigonometry .............................................................. 238 CategoricityoftheEuclideanPostulates.......................................243 Exercises.................................................................. 245 Chapter14. Circles.......................................................... 247 Definitions.................................................................247 CirclesandLines........................................................... 248 IntersectionsbetweenCircles................................................ 252 ArcsandInscribedAngles...................................................254 InscribedandCircumscribedPolygons........................................262 RegularPolygonsandCircles................................................271 Exercises.................................................................. 274 Chapter15. CircumferenceandCircularArea .................................. 279 Circumference ............................................................. 280 ApproximationsbyRegularPolygons.........................................285 viii Contents TheDefinitionofPi.........................................................288 AreaofaCircularRegion................................................... 290 Generalizations.............................................................293 Exercises.................................................................. 293 Chapter16. CompassandStraightedgeConstructions........................... 295 BasicConstructions.........................................................296 ConstructingRegularPolygons .............................................. 305 ImpossibleConstructions....................................................307 Exercises.................................................................. 319 Chapter17. TheParallelPostulateRevisited....................................321 PostulatesEquivalenttotheEuclideanParallelPostulate........................321 AngleSumsandDefects.................................................... 325 Clairaut’sPostulate......................................................... 330 It’sAllorNothing.......................................................... 333 Exercises.................................................................. 334 Chapter18. IntroductiontoHyperbolicGeometry...............................337 TheHyperbolicParallelPostulate............................................ 337 SaccheriandLambertQuadrilaterals..........................................340 AsymptoticRays........................................................... 343 AsymptoticTriangles....................................................... 350 Exercises.................................................................. 354 Chapter19. ParallelLinesinHyperbolicGeometry ............................. 355 ParallelLinesandAngles....................................................357 ParallelLinesandCommonPerpendiculars ................................... 359 DistancesbetweenParallelLines.............................................362 Exercises.................................................................. 367 Chapter20. Epilogue: WhereDoWeGofromHere?............................ 369 AppendixA. Hilbert’sAxioms................................................375 AppendixB. Birkhoff’sPostulates.............................................377 AppendixC. TheSMSGPostulates............................................379 AppendixD. ThePostulatesUsedinThisBook.................................381 PostulatesofNeutralGeometry.............................................. 381 PostulatesofEuclideanGeometry............................................382 PostulatesofHyperbolicGeometry...........................................382 Contents ix AppendixE. TheLanguageofMathematics.................................... 383 SimpleStatements..........................................................383 LogicalConnectives........................................................ 385 ConditionalStatements......................................................388 Quantifiers.................................................................394 MathematicalDefinitions....................................................401 Exercises.................................................................. 402 AppendixF. Proofs.......................................................... 405 TheStructureofMathematicalProofs ........................................ 405 DirectProofs...............................................................410 IndirectProofs............................................................. 416 ExistenceProofs............................................................417 ProofbyMathematicalInduction.............................................420 AppendixG. SetsandFunctions .............................................. 423 BasicConcepts.............................................................423 OrderedPairsandCartesianProducts.........................................426 Functions..................................................................428 Exercises.................................................................. 431 AppendixH. PropertiesoftheRealNumbers................................... 433 PrimitiveTerms............................................................ 433 Definitions.................................................................434 Properties..................................................................435 AppendixI. RigidMotions: AnotherApproach................................. 441 ReflectionImpliesSAS ..................................................... 442 SASImpliesReflection ..................................................... 446 Exercises.................................................................. 449 References....................................................................451 Index.........................................................................455