Logout succeed
Logout succeed. See you again!

Bimodules associated to vertex operator algebras PDF
Preview Bimodules associated to vertex operator algebras
Bimodules associated to vertex operator algebras Chongying Dong1 Department of Mathematics 6 University of California 0 Santa Cruz, CA 95064 0 2 Cuipo Jiang2 n Department of Mathematics a Shanghai Jiaotong University J 7 Shanghai 200030 China 2 ] A Abstract Q . Let V be a vertex operator algebra and m,n ≥ 0. We construct an A (V)- h n t A (V)-bimodule A (V) which determines the action of V from the level m sub- a m n,m m space to level n subspace of an admissible V-module. We show how to use A (V) n,m [ to construct naturally admissible V-modules from Am(V)-modules. We also deter- mine the structure of A (V) when V is rational. 2000MSC:17B69 2 n,m v 6 2 1 Introduction 6 1 0 The representation theory for a vertex operator algebra [B], [FLM] has been studied 6 largely in terms of representation theory for various associative algebras associated to the 0 / vertex operator algebra (see [Z], [KW], [DLM2]-[DLM4], [MT], [DZ], [X]). A sequence of h t associative algebras An(V) for n ≥ 0 was introduced in [DLM3] to deal with the first n+1 a m homogeneous subspaces of an admissible module. These algebras extend and generalize the associative algebra A(V) constructed in [Z]. The main idea of A (V) theory is how : n v to use the first few homogeneous subspaces of a module to determine the whole module. i X From this point of view, the A (V) theory is an analogue of the highest weight module n r a theory for semisimple Lie algebras in the field of vertex operator algebra. Let M = ∞ M(n) be an admissible V-module with M(0) 6= 0. (cf. [DLM2]).Then n=0 each M(k) is an A (V)-module for k ≤ n [DLM3]. On the other hand, given an A (V)- n n L module U which cannot factor through A (V) one can construct a Verma type admis- n−1 sible V-module M¯(U) such that M¯(U)(n) = U. Also V is rational if and only if A (V) n is semisimple for all n. So the collection of associative algebras A (V) determine the n representation theory of V in some sense. However, A (V) preserves each homogeneous n subspace M(m) for m ≤ n and cannot map M(s) to M(t) if s 6= t. The goals of the present paper are to alleviate this situation. 1 Supported by NSF grants, China NSF grant 10328102 and a Faculty research grant from the Uni- versity of California at Santa Cruz. 2 Supported in part by China NSF grant 10571119. 1 Given two nonnegative integers m,n we will construct an A (V)-A (V)-bimoulde n m A (V) with the property that for any A (V)-module U which cannot factor through n,m m A (V) one can associate a Verma type admissible V-module M(U) = ∞ M(U)(n) m−1 k=0 such that M(U)(n) = A (V) ⊗ U. The action of V on M(U)(n) is determined n,m Am(V) L by a canonical bimodule homomorphism from A (V)⊗ A (V) to A (V). Also, p,n An(V) n,m p,m for a given admissible V-module W = W(k) with W(0) 6= 0, there is an A (V)- k≥0 n Am(V)-bimodule homomorphism from An,m(V) to HomC(W(m),W(n)). So the collection of A (V) for all m,n ∈ Z determiLne the action of vertex operator algebra V on n,m + its admissible module W completely. This, in fact, is our original motivation to define A (V). n,m If V is a rational vertex operator algebra, then V has only finitely many irreducible admissible V-modules up to isomorphism and each irreducible V-module is ordinary (see [DLM2]). In this case we let W1,...,Ws be the inequivalent irreducible admissible V- modules such that Wi(0) 6= 0. Then A (V) is the direct sum of full matrix algebras n An(V) = si=1 nk=0EndC(Wi(k)). We show in this paper that if V is rational then L L min{m,n} s An,m(V) ∼= HomC(Wi(m−l),Wi(n−l)) . ! l=0 i=1 M M The structure of A (V) for general V will be studied in a sequel to this paper. n,m We have already mentioned the A (V) theory. In fact, the Verma type admissible n V-module M(U) has been constructed and denoted by M¯(U) in [DLM3] using the idea of induced module in Lie theory. But our work in this paper leads to a strengthening of this old construction. While the old construction in [DLM3] was given as an abstract quotient of certain induced module for certain Lie algebras, the new construction is explicit and each homogeneous subspace M(U)(n) is obvious. In the case that U = A (V) we see m immediately that A (V) is an admissible V-module. We expect that the study of n≥0 n,m bimodules A (V) will lead to a proof of some well known conjecture in representation n,m L theory. The result in this paper is also related to some results obtained in [MNT] where the universal enveloping algebraof avertex operatoralgebra isused instead ofvertex operator algebra itself in this paper. The paper is organized as follows: In Section 2 we introduce the A (V)-A (V)- n m bimodule A (V) with lot of technical calculations. In Section 3 we discuss the various n,m properties of A (V) such as the A (V)-A (V)-bimodule epimorphism from A (V) n,m n m n,m to A (V) induced from the identity map on V, isomorphism between A (V) n−1,m−1 n,m and A (V) and bimodule homomorphism from A (V) ⊗ A (V) to A (V). m,n n,p Ap(V) p,m n,m In Section 4 we first give an A (V)-A (V)-bimodule homomorphism from A (V) to n m n,m HomC(W(m),W(n)) for any admissible V-module W = ∞ W(k). We also show how k=0 to construct anadmissible V-modulefromanA (V)-modulewhich cannot factor through m L A (V) by using A (V). In addition we show that A (V) and A (V) are the same m−1 n,m n n,n although A (V) as a quotient space of A (V) seems much smaller from the definition. n,n n The explicit structure of A (V) is determined if V is rational. n,m 2 We assume that the reader is familiar with the basic knowledge on the representation theory such as of weak modules, admissible modules and (ordinary) modules as presented in [DLM1]-[DLM2] (also see [FLM], [LL]). 2 A (V )-A (V )-bimodule A (V ) n m n,m Let V = (V,Y,1,ω) be a vertex operator algebra. An associative algebra A (V) for any n nonnegative integer n has been constructed in [DLM3] to study the representation theory for vertex operator algebras (see below). For m,n ∈ Z , we will construct an A (V)- + n A (V)-bimodule A (V) in this section. It is hard to see in this section why A (V) is m n,m n,m so defined and the motivation for defining A (V) comes from the representation theory n,m of V (see Section 4 below). For homogeneous u ∈ V, v ∈ V and m,n,p ∈ Z , define the product ∗n on V as + m,p follows p m+n−p+i (1+z)wtu+m u∗n v = (−1)i Res Y(u,z)v. m,p i z zm+n−p+i+1 i=0 (cid:18) (cid:19) X If n = p, we denote ∗n by ∗¯n, and if m = p, we denote ∗n by ∗n, i.e., m,p m m,p m m n+i (1+z)wtu+m u∗n v = (−1)i Res Y(u,z)v, m i z zn+i+1 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m u∗¯nv = (−1)i Res Y(u,z)v. m i z zm+i+1 i=0 (cid:18) (cid:19) X The products u∗n v andu∗¯nv will induce the right A (V)-moduleandleft A (V)-module m m m n structure on A (V) which will be defined later. n,m If m = n, then u∗n v and u∗¯nv are equal, and have been defined in [DLM3]. As in m m [DLM3] we will denote the product by u∗ v in this case. n Let O′ (V) be the linear span of all u◦n v and L(−1)u+(L(0)+m−n)u, where for n,m m homogeneous u ∈ V and v ∈ V, (1+z)wtu+m u◦n v = Res Y(u,z)v. m z zn+m+2 Again if m = n, u◦n v has been defined in [DLM3] where it was denoted by u◦ v. Let m n O (V) = O′ (V) (see [DLM3]). The following theorem is obtained in [DLM3]. n n,n Theorem 2.1. The A (V) is an associative algebra with product ∗ with identity 1 + n n O (V). n We will present more results on A (V) and its connection with the representation n theory of V from [DLM3] later on when necessary. In order to define A (V) we need n,m several lemmas. In the case that m = n most of these lemmas have been proved in [DLM3]. But when m 6= n even if the old proofs given in [DLM3] work but they are much more complicated and need a lot of modifications. Sometimes we need to find totally new proofs. 3 Lemma 2.2. For any u,v ∈ V, u◦n v lies in O (V)∗¯nV. m n m Proof: Let u,v ∈ V. Then n m+i (1+z)wtu+1+m d (L(−1)u)∗¯nv = (−1)i Res Y(u,z)v m i z zm+i+1 dz i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m = −(wtu+m+1) (−1)i Res Y(u,z)v i z zm+i+1 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m+1 + (m+i+1)(−1)i Res Y(u,z)v i z zm+i+2 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m = −(wtu+m+1) (−1)i Res Y(u,z)v z i zm+i+1 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m + (m+i+1)(−1)i Res Y(u,z)v i z zm+i+1 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m + (m+i+1)(−1)i Res Y(u,z)v z i zm+i+2 i=0 (cid:18) (cid:19) X Thus (L(−1)u+L(0)u)∗¯nv m n m+i (1+z)wtu+m = i(−1)i Res Y(u,z)v z i zm+i+1 i=0 (cid:18) (cid:19) X n m+i (1+z)wtu+m + (m+i+1)(−1)i Res Y(u,z)v i z zm+i+2 i=0 (cid:18) (cid:19) X n+m (1+z)wtu+m = (n+m+1)(−1)n Res Y(u,z)v m z zn+m+2 (cid:18) (cid:19) n+m = (n+m+1)(−1)n u◦n v. m m (cid:18) (cid:19) Note that L(−1)u+L(0)u ∈ O (V). The proof is complete. n The next lemma is motivated by the commutator relation of vertex operators and will relate the two products u∗¯nv and u∗n v. m m Lemma 2.3. If u,v ∈ V, p ,p ,m ∈ Z with p +p −m ≥ 0, then 1 2 + 1 2 u∗p1+p2−mv −v ∗p1+p2−m u−Res (1+z)wtu−1+m−p2Y(u,z)v ∈ O′ (V). m,p1 m,p2 z p1+p2−m,m Proof: From the definition of O′ (V), one can easily verify that p1+p2−m,m −z Y(v,z)u ≡ (1+z)−wtu−wtv−2m+p1+p2Y(u, )v 1+z 4 modulo O′ (V) (cf. [Z] and [DLM2]). Hence p1+p2−m,m p2 p +i (1+z)wtv+m v ∗p1+p2−m u = (−1)i 1 Res Y(v,z)u m,p2 i z zp1+i+1 i=0 (cid:18) (cid:19) X p2 p +i (1+z)wtv+m −z ≡ (−1)i 1 Res (1+z)−wtu−wtv−2m+p1+p2Y(u, )v i z zp1+i+1 1+z i=0 (cid:18) (cid:19) X (mod O′ (V)) p1+p2−m,m p2 p +i (1+z)wtu+i−1+m−p2 = (−1)p1 1 Res Y(u,z)v. z i zp1+i+1 i=0 (cid:18) (cid:19) X Recall the definition of u∗p1+p2−mv. Then m,p1 u∗p1+p2−mv −v∗p1+p2−m u ≡ Res A (z)(1+z)wtu−1+m−p2Y(u,z)v, m,p1 m,p2 z p1,p2 where p1 p +i (1+z)p2+1 p2 p +i (1+z)i A (z) = (−1)i 2 − (−1)p1 1 . p1,p2 i zp2+i+1 i zp1+i+1 i=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) X X The lemma now follows from Proposition 5.1 in the Appendix. The proof of the following lemma is fairly standard (cf. [DLM3] and [Z]). Lemma 2.4. For homogeneous u,v ∈ V, and integers k ≥ s ≥ 0, (1+z)wtu+m+s Res Y(u,z)v ∈ O′ (V). z zn+m+2+k n,m Lemma 2.5. We have V¯∗nO′ (V) ⊆ O′ (V), O′ (V)∗n V ⊆ O′ (V). m n,m n,m n,m m n,m Proof: For homogeneous u,v ∈ V and w ∈ V, u∗¯n(v◦n w) m m n m+i (1+z )wtv+m (1+z )wtv+m ≡ (−1)i Res 1 Y(u,z )Res 2 Y(v,z )w i z1 zm+i+1 1 z2 zn+m+2 2 i=0 (cid:18) (cid:19) 1 2 X n m+i (1+z )wtv+m (1+z )wtv+m − (−1)i Res 2 Y(v,z )Res 1 Y(u,z )w i z2 zn+m+2 2 z1 zm+i+1 1 i=0 (cid:18) (cid:19) 2 1 X n ∞ m+i wtu+m −m−i−1 = (−1)i i j k i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19)k=0(cid:18) (cid:19) X X X (1+z )wtu+wtv+2m−j(z −z )j+k 2 1 2 ·Res Res Y(Y(u,z −z )v,z )w z2 z1−z2 z2m+n+i+3+k 1 2 2 2 n ∞ m+i wtu+m −m−i−1 = (−1)i i j k i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19)k=0(cid:18) (cid:19) X X X (1+z )wtu+wtv+2m−j 2 ·Res Y(u v,z )w. z2 z2m+n+i+3+k j+k 2 2 5 Note that the weight of u v is wtu + wtv − j − k − 1. By Lemma 2.4 we see that j+k u∗¯n(v ◦n w) lies in O′ (V). m m n,m By Lemma 2.3, we have u∗¯n(v ◦n w)−(v ◦n w)∗nu m m m m ≡ Res (1+z)wtu−1Y(u,z)(v ◦n w) z m (1+z )wtv+m = Res (1+z )wtu−1Res 2 Y(u,z )Y(v,z )w z1 1 z2 zn+m+2 1 2 2 wtu−1 (1+z )wtu+wtv+m−1−j(z −z )j 2 1 2 ≡ Res Res j z2 z1−z2 zn+m+2 j≥0 (cid:18) (cid:19) 2 X ·Y(Y(u,z −z )v,z )w 1 2 2 wtu−1 (1+z )wtu+wtv+m−1−j = Res 2 Y(u v,z )w ∈ O′ (V) j z2 zn+m+2 j 2 n,m j≥0 (cid:18) (cid:19) 2 X which is a vector in O′ (V) by the definition of O′ (V). As a result, (v ◦n w)∗nu ∈ n,m n,m m m O′ (V). n,m Next we deal with L(−1)u+(L(0)+m−n)u ∈ O′ (V). As before we assume that n,m u is homogeneous. Then (L(−1)u+(L(0)+m−n)u)∗nv m m n+i (1+z)wtu+m+1 = (−1)i Res Y(L(−1)u,z)v i z zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m + (−1)i (wtu+m−n)Res Y(u,z)v z i zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m = (−1)i+1 (wtu+m+1)Res Y(u,z)v i z zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m+1 + (−1)i (n+i+1)Res Y(u,z)v z i zn+i+2 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m + (−1)i (wtu+m−n)Res Y(u,z)v i z zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m = (−1)i+1 (n+1)Res Y(u,z)v z i zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m + (−1)i (n+i+1)Res Y(u,z)v i z zn+i+1 i=0 (cid:18) (cid:19) X m n+i (1+z)wtu+m + (−1)i (n+i+1)Res Y(u,z)v. i z zn+i+2 i=0 (cid:18) (cid:19) X 6 It is easy to show that the last expression is equal to (−1)m(n+m+1) m+n u◦ v. By m n Lemma 2.2, (L(−1)u+(L(0)+m−n)u)∗nv belongs to O′ (V). m n,m (cid:0) (cid:1) Finally for v¯∗n(L(−1)u+(L(0)+m−n)u) we use Lemma 2.3 to yield m v¯∗n(L(−1)u+(L(0)+m−n)u)−(L(−1)u+(L(0)+m−n)u)∗nv m m = Res (1+z)wtv−1Y(v,z)(L(−1)u+(L(0)+m−n)u) z wtv −1 wtv−1 = v L(−1)u+(wtu+m−n) v u i i i i i≥0 (cid:18) (cid:19) i≥0 (cid:18) (cid:19) X X wtv −1 wtv −1 = L(−1) v u+ iv u i i−1 i i i≥0 (cid:18) (cid:19) i≥0 (cid:18) (cid:19) X X wtv−1 +(wtu+m−n) v u i i i≥0 (cid:18) (cid:19) X wtv −1 wtv −1 = L(−1) v u+ (i+1)v u i i i i+1 i≥0 (cid:18) (cid:19) i≥0 (cid:18) (cid:19) X X wtv−1 +(wtu+m−n) v u i i i≥0 (cid:18) (cid:19) X wtv −1 = (L(−1)+wtv −i−1+wtu+m−n)v u i i i≥0 (cid:18) (cid:19) X wtv −1 = (L(−1)v u+L(0)v u+(m−n)v u) i i i i i≥0 (cid:18) (cid:19) X which is in O′ (V). So v¯∗n(L(−1)u+(L(0)+m−n)u) ∈ O′ (V), as desired. n,m m n,m We should remind the reader that our goal is to construct an A (V)-A (V)-bimodule n m A (V) with the left action∗¯n of A (V) and the right action∗n of A (V). The following n,m m n m m lemma claims that the left action ∗¯n and the right action ∗n commute. On the other m m hand, we do not need to prove this lemma as a bigger subspace O (V) of V containing n,m O′ (V) will be modulo out. In fact, (a∗¯nb)∗n c−a∗¯n(b∗n c) is an element of O (V) n,m m m m m n,m (see Lemma 2.6 below). But eventually we expect to prove that O (V) and O′ (V) m,n n,m are the same although we cannot achieve this in the paper. Lemma 2.6. We have (a∗¯nb)∗nc−a∗¯n(b∗nc) lies in O′ (V) forhomogeneousa,b,c ∈ V. m m m m n,m Proof: The proof of this lemma is similar to that of Theorem 2.4 of [DLM3]. In fact, if m = n, the lemma is exactly the associativity of product ∗ in A (V). n n 7 A straightforward calculation using Lemma 2.4 gives: (a∗¯nb)∗n c m m m n n+k m+i wta+m = (−1)k (−1)i k i j k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19) X X X (1+z)wta+wtb+2m−j+i ·Res Y(a b,z)c z zn+k+1 j−m−i−1 m n n+k m+i wta+m = (−1)k (−1)i k i j k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19) X X X (1+z )wta+wtb+2m−j+i(z −z )j−m−i−1 2 1 2 ·Res Res Y(Y(a,z −z )b,z )c z2 z1−z2 zn+k+1 1 2 2 2 m n n+k m+i = (−1)k (−1)i Res Res k i z2 z1−z2 k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) X X (1+z )wta+m(1+z )wtb+m+i(z −z )−m−i−1 1 2 1 2 · Y(Y(a,z −z )b,z )c zn+k+1 1 2 2 2 m n n+k m+i −m−i−1 = (−1)k (−1)i k i j k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19) X X X (1+z )wta+m(1+z )wtb+m+i(−z )j 1 2 2 ·Res Res Y(a,z )Y(b,z )c z1 z2 zm+i+1+jzn+k+1 1 2 1 2 m n n+k m+i −m−i−1 − (−1)k (−1)i k i j k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) j≥0 (cid:18) (cid:19) X X X (1+z )wta+m(1+z )wtb+m+izj ·Res Res 1 2 1Y(b,z )Y(a,z )c z2 z1 (−z )m+i+1+jzn+k+1 2 1 2 2 m n n+k m+i ≡ a∗¯n(b∗n c)+ (−1)k (−1)i m m k i k=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) X X n−i −m−i−1 i i zj+l 1 ·Res Res (−1)j 2 − z1 z2"j=0 (cid:18) j (cid:19) l=0 (cid:18)l(cid:19)z1j+i z1i# X X (1+z )wta+m(1+z )wtb+m 1 2 · Y(a,z )Y(b,z )c. zm+1zn+k+1 1 2 1 2 The lemma then follows from Proposition 5.2 in the Appendix. In order to construct A (V) we need to introduce more subspaces of V. Let O′′ (V) n,m n,m be the linear span of u∗n ((a∗p3 b)∗p3 c−a∗p3 (b∗p2 c)),for a,b,c,u ∈ V,p ,p ,p ∈ m,p3 p1,p2 m,p1 m,p2 m,p1 1 2 3 Z , and O′′′ (V) = (V ∗n O (V))∗n V. Set + n,m p∈Z+ p p m,p PO (V) = O′ (V)+O′′ (V)+O′′′ (V). n,m n,m n,m n,m 8 Lemma 2.7. For p ,p ,m,n ∈ Z , we have (V ∗n O′ (V))∗n V ⊆ O (V). 1 2 + p1,p2 p2,p1 m,p1 n,m Proof: We first prove that (L(−1)u + (L(0) +p −p )u)∗p2 v ∈ O (V) ∗p2 V, for 1 2 m,p1 p2 m,p2 homogeneous u ∈ V and v ∈ V. In fact, (L(−1)u+(L(0)+p −p )u)∗p2 v 1 2 m,p1 p1 m+p −p +i (1+z)wtu+m+1 = (−1)i 2 1 Res Y(L(−1)u,z)v i z zm+p2−p1+i+1 i=0 (cid:18) (cid:19) X p1 m+p −p +i (1+z)wtu+m + (−1)i 2 1 (wtu+p −p )Res Y(u,z)v i 1 2 zzm+p2−p1+i+1 i=0 (cid:18) (cid:19) X p1 m+p −p +i (1+z)wtu+m = (−1)i+1 2 1 (wtu+m+1)Res Y(u,z)v i zzm+p2−p1+i+1 i=0 (cid:18) (cid:19) X p1 m+p −p +i (1+z)wtu+m+1 + (−1)i 2 1 (m+p −p +i+1)Res Y(u,z)v i 2 1 z zm+p2−p1+i+2 i=0 (cid:18) (cid:19) X p1 m+p −p +i (1+z)wtu+m + (−1)i 2 1 (wtu+p −p )Res Y(u,z)v i 1 2 zzm+p2−p1+i+1 i=0 (cid:18) (cid:19) X m+p (1+z)wtu+m = (−1)p1 2 (m+p +1)Res Y(u,z)v. p 2 z zm+p2+2 (cid:18) 1 (cid:19) So by Lemma 2.2, (L(−1)u+(L(0)+p −p )u)∗p2 v ∈ O (V)∗p2 V. Hence by the 1 2 m,p1 p2 m,p2 definitions of O′ (V) and O (V), and Lemma 2.2, we have n,m n,m (V ∗n O′ (V))∗n V ⊆ V ∗n (O′ (V)∗p2 V)+O (V) p1,p2 p2,p1 m,p1 m,p2 p2,p1 m,p1 n,m ⊆ V ∗n ((O (V)∗p2 V)∗p2 V +O (V)∗p2 V)+O (V) m,p2 p2 p1,p2 m,p1 p2 m,p2 n,m ⊆ V ∗n (O (V)∗p2 (V ∗p2 V))+(V ∗n O (V))∗n V +O (V) m,p2 p2 m,p2 m,p1 p2 p2 m,p2 n,m ⊆ (V ∗n O (V))∗n (V ∗p2 V)+O (V) p2 p2 m,p2 m,p1 n,m ⊆ O (V), n,m as required. Lemma 2.8. For any m,n,p ∈ Z , we have V∗n O (V) ⊆ O (V), O (V)∗n V ⊆ + m,p p,m n,m n,p m,p O (V). In particular, V∗¯nO (V) ⊆ O (V), O (V)∗n V ⊆ O (V). n,m m n,m n,m n,m m n,m Proof: By the definition of O (V) and Lemma 2.7, it suffices to prove that n,m V∗n ((V ∗p O (V))∗p V +O′′ (V)) ⊆ O (V) (2.1) m,p p1 p1 m,p1 p,m n,m and ((V ∗n O (V))∗n V +O′′ (V))∗n V ⊆ O (V) (2.2) p1 p1 p,p1 n,p m,p n,m for p ,p ∈ Z . 1 + 9 We first prove (2.1). It is clear that V∗n ((V ∗p O (V))∗p V) ⊆ V∗n (V ∗p (O (V)∗p1 V))+O (V) m,p p1 p1 m,p1 m,p m,p1 p1 m,p1 n,m ⊆ (V∗n V)∗n (O (V)∗p1 V)+O (V) p1,p m,p1 p1 m,p1 n,m ⊆ ((V∗n V)∗n O (V))∗n V +O (V) ⊆ O (V). p1,p p1 p1 m,p1 n,m n,m It remains to prove that V∗n O′′ (V) ⊆ O (V). With u = 1 in the definition of m,p p,m n,m O′′ (V) we have (a∗n b)∗n c−a∗n (b∗p2 c) ∈ O (V). Thus n,m p1,p2 m,p1 m,p2 m,p1 n,m v∗n (u∗p ((a∗p3 b)∗p3 c−a∗p3 (b∗p2 c))) m,p m,p3 p1,p2 m,p1 m,p2 m,p1 ≡ (v∗n u)∗n ((a∗p3 b)∗p3 c−a∗p3 (b∗p2 c)) p3,p m,p3 p1,p2 m,p1 m,p2 m,p1 ≡ 0 (mod O (V)). n,m So (2.1) is true. For(2.2),itiseasytoseethat((V∗n O (V))∗n V)∗n V ⊆ (V∗n O (V))∗n (V∗p1 p1 p1 p,p1 m,p p1 p1 m,p1 m,p V)+O (V) ⊆ O (V). Let a,b,c,u,v ∈ V and p ,p ,p ,p ∈ Z , then n,m n,m 1 2 3 + (u∗n ((a∗p3 b)∗p3 c−a∗p3 (b∗p2 c)))∗n v p,p3 p1,p2 p,p1 p,p2 p,p1 m,p ≡ u∗n (((a∗p3 b)∗p3 c−a∗p3 (b∗p2 c))∗p3 v) m,p3 p1,p2 p,p1 p,p2 p,p1 m,p ≡ u∗n ((a∗p3 b)∗p3 (c∗p1 v))−u∗n (a∗p3 ((b∗p2 c)∗p2 v)) m,p3 p1,p2 m,p1 m,p m,p3 m,p2 p,p1 m,p ≡ u∗n (a∗p3 (b∗p2 (c∗p1 v)))−(u∗n a)∗n ((b∗p2 c)∗p2 v) m,p3 m,p2 m,p1 m,p p2,p3 m,p2 p,p1 m,p ≡ (u∗n a)∗n (b∗p2 (c∗p1 v))−(u∗n a)∗n ((b∗p2 c)∗p2 v) p2,p3 m,p2 m,p1 m,p p2,p3 m,p2 p,p1 m,p ≡ 0 (mod O (V)). n,m The lemma is proved. We now define A (V) = V/O (V). n,m n,m The reason for this definition will become clear from the representation theory of V discussed later. The following is the first main theorem in this paper. Theorem 2.9. Let V be a vertex operator algebra and m,n nonnegative integers. Then A (V) is an A (V)-A (V)-bimodule such that the left and right actions of A (V) and n,m n m n A (V) are given by ¯∗n and ∗n. m m m Proof: First, both actions are well defined from the definition of O (V) and Lemma n,m 2.8. The left A (V)-module and right A (V)-module structures then follow from the n m fact that O′′ (V) is a subspace of O (V). The commutativity of two actions proved in n,m n,m Lemma 2.6 asserts that A (V) is an A (V)-A (V)-bimodule. n,m n m Remark 2.10. We will prove in Section 4 that if m = n, the A (V) defined here is the n,n same as A (V) discussed before. In particular, O (V) and O′ (V) coincide. In other n n,n n,n words, O′′ (V), O′′′ (V) are subspaces of O′ (V). We suspect that this is true in general. n,n n,n n,n That is, O (V) and its subspace O′ (V) are equal. It seems that this is a very difficult n,m n,m problem and we cannot find a proof for this in this paper. 10