loading

Logout succeed

Logout succeed. See you again!

ebook img

Bulk viscosity in heavy ion collision PDF

file size0.87 MB
languageEnglish

Preview Bulk viscosity in heavy ion collision

Cent. Eur. J.Phys.• 1-4 Authorversion Central European Journal of Physics Bulk viscosity in heavy ion collision Research Article Victor Roy ∗ and A.K. Chaudhuri 2 VariableEnergyCyclotronCentre, 1 1/AF,Bidhannagar,Kolkata-700064,India 0 2 n Abstract: Theeffectofatemperaturedependentbulkviscositytoentropydensityratio(ζ/s)alongwithaconstant a shear viscosity to entropy density ratio (η/s) on the space time evolution of the fluid produced in high J energy heavy ion collisions have been studied in a relativistic viscous hydrodynamics model. The boost 0 invariantIsrael-Stewarttheoryofcausalrelativisticviscoushydrodynamicsisusedtosimulatetheevolution 2 ofthefluidin2spatialand1temporaldimension. Thedissipativecorrectiontothefreezeoutdistribution forbulkviscosityiscalculatedusingGrad’sfourteenmomentmethod. Fromoursimulationweshowthat ] themethodisapplicableonlyforζ/s<0.004. h t PACS (2008): 12.38.Mh,47.75.+f,25.75.Ld - l c Keywords: BulkViscosity• Relativistichydrodynamics• Grad’smoment u © VersitaWarsawandSpringer-VerlagBerlinHeidelberg. n [ 1 v 0 1. Introduction 3 2 4 Recentexperimentsinhighenergynuclearcollisionsatrelativisticheavyioncollider(RHIC)confirmstheexistence . 1 ofanewstateofmatterknownasQuarkGluonPlasma(QGP)[1]. TheproductionofQGPinheavyioncollision 0 2 anditssubsequentcollectiveevolutionprovideustheuniqueopportunitytostudythetransportpropertiesofthis 1 : mostfundamentalformofmatter. Relativisticviscoushydrodynamicssimulationsofobservableslikeellipticflow v i X (v2) and transverse momentum (pT) spectra have been compared to experimental data to extract the QGP η/s. r Most studies show that the estimated value of η/s lies between 1−4×(1/4π). However to correctly extract the a η/softheQGPfluid,itisimportanttoknowtheeffectoffinitebulkviscosityonthefluidevolution. Theoretical calculationsbasedonpQCD[2]andlatticeQCD[3]showsthatthebulkviscosityisnon-zeroforthetemperature rangeapplicableintheheavyioncollision. Inthisworkweuseatemperaturedependentformofζ/stostudythe effect of bulk viscosity in fluid evolution. The dissipative correction to the freezeout distribution function bulk viscosity has also been considered using Grad’s 14 moment method. ∗ E-mail: [email protected] 1 Bulkviscosityinheavyioncollision Figure 1. (Color online) ζ/s as a function of temperature. Red dashed line is the η/s=1/4π. 2. Viscous hydrodynamic model Thespacetimeevolutionofthefluidwassimulatedbysimultaneouslysolvingtheenergymomentumconservation equation∂ Tµν =0,alongwiththerelaxationequationforshearandbulkstress. HereTµν =((cid:15)+p+Π)uµuν− µ (p+Π)gµν +πµν is the energy momentum tensor and (cid:15),p are energy density, pressure of the fluid,gµν is the metrictensor; Πandπµν arebulkandshearstresstensorrespectively. AccordingtotheIsrael-Stewarttheoryof causal viscous hydrodynamics [4], the shear and bulk viscosity obey the following relaxation equations Dπµν = 1 [2η∇<µuν> −πµν]−(cid:0)uµπνλ+uνπµλ(cid:1)Du ; and DΠ = − 1 [Π+ζ∇ uµ + 1ζTΠ∂ (τΠuµ)]. Here D is the τπ λ τΠ µ 2 µ ζT convective derivative,τ and τ are the relaxation time for shear and bulk stresses respectively. We assume that π Π the fluid achieve near local thermalization at proper time 0.6 fm. Initial transverse velocity (v ) is assumed to T bezero. TheinitialenergydensityprofileintransverseplaneiscalculatedfromatwocomponentGlaubermodel withacentralenergydensity(cid:15) =30GeV/fm3. Initialvalueofπµν andΠwassettotheircorrespondingNavier- 0 Stokesestimate. Weassumethefluidfreezesoutwhenanelementofitcoolsdownbelowaconstanttemperature T =130 MeV. The freezeout procedure was carried out by using Cooper-Frey algorithm. In the present study, fo wehaveusedanequationofstate(EoS)wheretheWuppertal-Budapestlatticecalculation[3]forthedeconfined phaseissmoothlyjoinedatcrossovertemperature174MeV,withhadronicresonancegasEoScomprisingallthe resonances below mass m =2.5 GeV. ζ/s and η/s are inputs to viscous hydrodynamics simulation. Figure 1 res showstheζ/s(T),whereζ/sintheQGPphaseisobtainedbyusingpQCDformulaζ/s=15η(T)(1/3−c2(T))2, s s the squared speed of sound c2 was calculated from lattice data [5]. In the hadronic phase ζ/s is parametrized s from [6]. The red dashed line in figure 1 is η/s. 3. Results and discussion We first discuss the change in pion p spectra and v due to bulk and shear viscosity in the fluid evolution only. T 2 √ In the left panel of figure 2 temporal evolution of spatially averaged transverse velocity (cid:104)(cid:104)v (cid:105)(cid:105)= (cid:104)(cid:104)γ vx2+vy2 (cid:105)(cid:105) is T (cid:104)(cid:104)γ(cid:105)(cid:105) 2 VictorRoy andA.K.Chaudhuri Figure 2. (Coloronline)Theleftplotshowsthetemporalevolutionoffluidtransversevelocityforideal(red),bulk(dasheddot) and shear viscous (dotted) evolution. The right plot is the π− invariant yield as a function of pT for ideal (red) ,bulkdasheddotandshearviscous(dotted)evolution. Theinsetfigureshowstherelativecorrectiontoinvariantyield duetothebulkviscosityincomparisontoidealfluid. Figure 3. (Coloronline)Theleftplotisthetemporalevolutionofmomentumanisotropyofthefluidforideal(red),bulk(dashed dot)andshearviscous(dotted)evolution. Rightplotisthecorrespondingellipticflow(v2)ofπ−. Theinsetplotshows therelativechangeinv2 duetobulkviscositycomparedtoidealfluid. shown for ideal, shear and bulk viscous fluid. Here the angular bracket denotes space average and γ = √1 . 1−v2 Becauseofthereducedpressureinbulkviscousevolution,(cid:104)(cid:104)v (cid:105)(cid:105)isreducedincomparisontoidealfluidevolution. T Whereasshearviscosityincreasethepressureinthetransversedirection,asaresultthe(cid:104)(cid:104)v (cid:105)(cid:105)islargercompared T to ideal fluid. The effect of the changed fluid velocity in viscous evolution is reflected in the slope of the p T spectraofπ− shownintherightpaneloffigure2. Therelativechangeintheπ− invariantyield(δN/N ,δN = ideal N −N )duetothebulkviscosityincomparisontoidealfluidisshownintheinsetofrightplotoffigure2. bulk ideal The relative correction is within ∼10%. Thetemporalevolutionofmomentumspaceanisotropy(cid:15) = (cid:82)dxdy(Txx−Tyy) isshownintheleftpaneloffigure3. p (cid:82)dxdy(Txx+Tyy) Viscositytriestodiminishanyvelocitygradientpresentinthefluid,asaresultofthat(cid:15) issmallerforbothshear p and bulk viscous evolution compared to ideal fluid. In a hydrodynamic model v is proportional to (cid:15) hence a 2 p reduction in (cid:15) will result in a reduced v . Elliptic flow of π− as a function of p is shown for ideal, shear and p 2 T bulk viscous evolution in the right plot of figure 3. The inset shows the relative correction to v due to bulk 2 viscosity. The relative correction to v is within ∼3%. 2 3 Bulkviscosityinheavyioncollision Figure4. (Coloronline)Theinvariantyieldofπ−asafunctionofpT foridealandbulkviscousevolutionwithfourdifferentζ/s valuesareshownintheupperleftplot. Thelowerleftplotshowstherelativecorrectiontotheπ− yieldasafunction ofpT forfourdifferentζ/s. Seetextfordetails. Therightsideplotissameastheleftbutforv2. We have employed Grad’s fourteen-moment method for calculating the dissipative correction to the freezeout distribution function as described in [7]. The details of the implementation of this method to our viscous code ”‘AZHYDRO-KOLKATA”’ can be found in [8, 9]. The top left panel of figure 4 shows the p spectra T of pions for ideal(black solid line) and for four different values of ζ/s. The corresponding relative correction to thep spectraisshowninthebottomleftpanel. Thev ofpionandtherelativecorrectionisshownintheright T 2 panel of figure 4. Freeze-out correction in Grad’s moment method is obtained under the assumption that the non-equilibrium correction to the distribution function is small than the equilibrium distribution function. It is thenimpliedthattherelativecorrectionδN/N issmallforGrad’smethodtobeapplicable. Theshadedbandin eq thebottomleftpanelcorrespondstotherelativecorrectionof50%. Ifweconsiderhereacorrectionofmagnitude greater than 50% indicates the breakdown of the the freezeout correction procedure then our study shows that the Grad’s method will be applicable if the ζ/s has value less than 0.01 times the present form considered here. References [1] J. Adams et al. [STAR Collaboration],Nucl. Phys. A 757, 102 (2005). [2] S. Weinberg,Astrophys. J. 168, 175 (1971). [3] H. B. Meyer,Phys. Rev. Lett. 100, 162001 (2008). [4] W. Israel,Annals of Physics 100,310-331 (1976). [5] S. Borsanyi et al.,JHEP 1011, 077 (2010). [6] J. Noronha-Hostler, J. Noronha and C. Greiner,Phys. Rev. Lett. 103, 172302 (2009). [7] A. Monnai and T. Hirano,Phys. Rev. C 80, 054906 (2009). [8] V. Roy, A. K. Chaudhuri, submitted to Phys. Rev. C. [9] A. K. Chaudhuri,arXiv:0801.3180 [nucl-th]. 4

See more

The list of books you might like