Logout succeed
Logout succeed. See you again!

Cartesian Product of Interval Neutrosophic Automata PDF
Preview Cartesian Product of Interval Neutrosophic Automata
Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Cartesian Product Of Interval Neutrosophic Automata V. Karthikeyan π R. Karuppaiya π 1Department of Mathematics, Government College of Engineering,Dharmapuri, Tamil Nadu, India. 2Department of Mathematics, Annamalai University,Chidambaram, Tamil Nadu, India. Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021 Abstract We introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic Key words: Cyclic, Cartesian product. AMS Mathematics subject classification: 03D05,20M35,18 B20,68Q45, 68Q70,94 A45 1 Introduction The neutrosophic set was introduced by Florentin Smarandache in 1999 [6]. The neutrosophic set is the generalization of classical sets, fuzzy set [11] and so on. The fuzzy set was introduced by Zadeh in 1965[11]. Bipolar fuzzy set, YinYang bipolar fuzzy set, NPN fuzzy set were introduced by W. R. Zhang in [8, 9, 10]. A neutrosophic set N is classiο¬ed by a Truth membership T , Indeterminacy membership I , and Falsity N N membership F , where T , I , and F are real standard and non-standard subsets of] 0β, 1+[. Interval-valued N N N N neutrosophic sets was introduced by Wang etal.,[7]. The concept of interval neutrosophic ο¬nite state machine was introduced by Tahir Mahmood [5]. Generalized products of directable fuzzy automata are discussed in [1]. Retrievability, subsystems, and strong subsystems of INA were introduced in the papers [2, 3, 4]. In this paper, we introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic. 2 Preliminaries 2.1 Neutrosophic Set [6] Let π be the universal set.. A neutrosophic set (NS) π in π is classiο¬ed by a truth membership T , an N indeterminacy membership I and a falsity membership F , where T , I , and F are real standard or non- N N N N N standard subsets of] 0β,1+[. That is π ={β© π₯,π (π₯),πΌ (π₯),πΉ (π₯) βͺ,π₯ βπ, π , πΌ , πΉ β ] 0β,1+[ } and 0β β€π π’π π (π₯)+ π π π π π π π π π’ππΌ (π₯)+π π’ππΉ (π₯) β€ 3+. We need to take the interval [0,1] for instead of ] 0β,1+[. π π .π.π Definition [π] An interval neutrosophic set (πΌππ for short) is π = {β©πΌ (π₯),π½ (π₯),πΎ (π₯)βͺ |π₯ β π} π π π = {β©π₯,[πππ πΌ (π₯),π π’π πΌ (π₯)],[πππ π½ (π₯),π π’π π½ (π₯)],[πππ πΎ (π₯),π π’π πΎ (π₯)]βͺ},π₯ β π, where πΌ (π₯), π π π π π π π π½ (π₯), and πΎ (π₯) representing the truth-membership, indeterminacy-membership and falsity membership for π π each π₯ β π. πΌ (π₯), π½ (π₯), πΎ (π₯) β [0,1] and the condition that 0 β€ π π’π πΌ (π₯) + π π’π π½ (π₯) + π π π π π π π’π πΎ (π₯) β€ 3. π π.π Definition [π] An πΌππ π is empty if πππ πΌ (π₯) = π π’π πΌ (π₯) = 0,πππ π½ (π₯) = π π’π π½ (π₯) 1,πππ πΎ (π₯) = π π’π πΎ (π₯) = π π π π π π 1 for all π₯ β π. 3 Interval Neutrosophic Automata 3.1 Deο¬nition [5] π = (π,π΄,π) is called interval neutrosophic automaton (πΌππ΄ for short), where π and π΄ are non-empty ο¬nite sets called the set of states and input symbols respectively, and π = {β©πΌ (π₯),π½ (π₯),πΎ (π₯)βͺ} is an πΌππ in πΓ π π π 3708 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article π΄Γπ. The set of all words of ο¬nite length of π΄ is denoted by Ξ£β. The empty word is denoted by π and the length of each π₯ β Ξ£β is denoted by |π₯|. 3.2 Deο¬nition [5] π = (π,π΄,π) be an πΌππ΄. Deο¬ne an πΌππ πβ = {β©πΌπβ(π₯), π½πβ(π₯),πΎπβ(π₯)βͺ} in πΓπ΄βΓπ by [1,1] ππ π = π π π πΌπβ(ππ,π,ππ) = { [0,0] ππ π β π π π [0,0] ππ π = π π π π½πβ(ππ,π,ππ) = { [1,1] ππ π β π π π [0,0] ππ π = π π π πΎπβ(ππ,π,ππ) = { [1,1] ππ π β π π π πΌπβ(ππ,π€,ππ) = πΌπβ(ππ, π₯π¦, ππ) = β¨ππ βπ[ πΌπβ(ππ, π₯, ππ)β§ πΌπβ(ππ, π¦, ππ)] π½πβ(ππ,π€,ππ) = π½πβ(ππ, π₯π¦, ππ) = β§ππ βπ[ π½πβ(ππ, π₯, ππ)β¨ π½πβ(ππ, π¦, ππ)] πΎπβ(ππ,π€,ππ) = πΎπβ(ππ, π₯π¦, ππ) = β§ππ βπ[ πΎπβ(ππ, π₯, ππ)β¨ πΎπβ(ππ, π¦, ππ)] β ππ, ππ βπ,π€ =π₯π¦ ,π₯ β Ξ£β and π¦ βΞ£. 4 Cartesian Composition of Interval Neutrosophic Automata 4.1 Deο¬nition Let π =(π, Ξ£ ,π),π =1,2 be interval neutrosophic automata and let Ξ£ β© Ξ£ =β . Let π Γ π = π π π π 1 2 1 2 (π Γ π , Ξ£ βͺ Ξ£ , π Γ π ), where 1 2 1 2 1 2 πΌ (π,π,π )>[0,0] ππ π β Ξ£ πππ π = π 1 π π 1 π π (Ξ±1ΓΞ±2)((ππ,ππ),π,(ππ,ππ))= {πΌ2(ππ,π,ππ)>[0,0] ππ π β Ξ£2 πππ ππ = ππ 0 ππ‘βπππ€ππ π π½ (π,π,π )<[1,1] ππ π β Ξ£ πππ π = π 1 π π 1 π π (π½1Γπ½2)((ππ,ππ),π,(ππ,ππ))= {π½2(ππ,π,ππ)<[1,1] ππ π β Ξ£2 πππ ππ = ππ 0 ππ‘βπππ€ππ π πΎ (π ,π,π )<[1,1] ππ π β Ξ£ πππ π = π 1 π π 1 π π ( πΎ1Γ πΎ2)((ππ,ππ),π,(ππ,ππ))= { πΎ2(ππ,π,ππ)<[1,1] ππ π β Ξ£2 πππ ππ = ππ 0 ππ‘βπππ€ππ π β(π,π ), (π ,π) β π Γπ , π β Ξ£ βͺ Ξ£ . Then π Γ π is called the Cartesian product of interval π π π π 1 2 1 2 1 2 neutrosophic automata. 4.2 Deο¬nition Let π = (π,π΄,π) be an INA. π is cyclic if β π β Q such that Q = S(π). π π 4.3 Deο¬nition [2] Let π = (π,π΄,π) be INA. M is connected if β π ,π and β a β Ξ£ such that either Ξ± (π,π,π )>[0,0], π π N π π Ξ² (π,π,π )<[1,1], πΎ (π,π,π )<[1,1] or N π π π π π Ξ± (π ,π,π)>[0,0], Ξ² (π ,π,π )<[1,1], πΎ (π ,π,π)<[1,1]. N π π N π π π π π 4.4 Deο¬nition [2] 3709 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Let π = (π,π΄,π) be INA. M is strongly connected if for every π,π β π, there exists u β Ξ£β such that π π Ξ±πβ(ππ,π’,ππ)>[0,0],Ξ²πβ(ππ,π’,ππ)<[1,1],Ξ³πβ(ππ,π’,ππ)<[1,1]. Theorem 4.1 Let π =(π,Ξ£ ,π),π =1,2 be interval neutrosophic automata and let Ξ£ β© Ξ£ = β . Let π π π π 1 2 π Γ π = (π Γπ ,Ξ£ βͺ Ξ£ ,π Γπ ) be the Cartesian product of π and π . Then β π₯ βΞ£ β βͺ Ξ£ β,π₯ β 1 2 1 2 1 2 1 2 1 2 1 2 π πΌ (π ,π₯,π )>[0,0] ππ π₯ βΞ£ β πππ π = π 1 π π 1 π π (Ξ±1ΓΞ±2)β((ππ,ππ),π₯,(ππ,ππ))= {πΌ2(ππ,π₯,ππ)>[0,0] ππ π₯ βΞ£2βπππ ππ = ππ 0 ππ‘βπππ€ππ π π½ (π,π₯,π )<[1,1] ππ π₯ β Ξ£ β πππ π = π 1 π π 1 π π (π½1Γπ½2)β((ππ,ππ),π₯,(ππ,ππ))= {π½2(ππ,π₯,ππ)<[1,1] ππ π₯ β Ξ£2β πππ ππ = ππ 0 ππ‘βπππ€ππ π πΎ (π ,π₯,π )<[1,1] ππ π₯ β Ξ£ βπππ π = π 1 π π 1 π π (πΎ1Γ πΎ2)β((ππ,ππ),π₯,(ππ,ππ))= { πΎ2(ππ,π₯,ππ)<[1,1] ππ π₯ β Ξ£1βπππ ππ = ππ 0 ππ‘βπππ€ππ π β(π,π ), (π ,π) β π Γπ . π π π π 1 2 Proof . Let π₯ βΞ£ β βͺ Ξ£ β,π₯ β π and let |π₯|=π. Let π₯ βΞ£ β. The result is trivial if π=1. Let the 1 2 1 result is true β π¦ β Ξ£ β, |π¦|=πβ1,π >1. Let π₯ =ππ¦ where π β Ξ£ ,π¦ β Ξ£ β. Now, 1 1 1 (Ξ± ΓΞ± )β((π,π ),π₯,(π ,π))=(Ξ± ΓΞ± )β((π,π ),ππ¦,(π ,π)) π1 π2 π π π π π1 π2 π π π π = β¨ {(Ξ± ΓΞ± )((π,π ),π,(π ,π ))β§(Ξ± ΓΞ± )β((π ,π ),π¦,(π ,π))} (ππ, ππ ) β π1Γ π2 π1 π2 π π π π 1 2 π π π π = β¨ {Ξ± (π, π, π ) β§ (Ξ± ΓΞ± )β((π ,π ),π¦,(π ,π))} ππ β π1 π1 π π π1 π2 π π π π β¨ {Ξ± (π, π, π ) β§ Ξ± β(π ,π¦,π )}>[0,0] ππ π = π = { ππ β π1 π1 π π π1 π π π π 0 ππ‘βπππ€ππ π Ξ± β(π ,ππ¦,π )>[0,0] ππ π = π = { π1 π π π π 0 ππ‘βπππ€ππ π (Ξ² ΓΞ² )β((π,π ),π₯,(π ,π))=(Ξ² ΓΞ² )β((π,π ),ππ¦,(π ,π)) π1 π2 π π π π π1 π2 π π π π = β§ {(Ξ² ΓΞ² )((π,π ),π,(π ,π ))β¨(Ξ² ΓΞ² )β((π ,π ),π¦,(π ,π ))} (ππ, ππ ) β π1Γ π2 π1 π2 π π π π π1 π2 π π π π = β§ {Ξ² (π, π, π ) β¨ (Ξ² ΓΞ² )β((π ,π ),π¦,(π ,π))} ππ β π1 π1 π π π1 π2 π π π π β§ {Ξ² (π , π, π ) β¨ Ξ² β(π ,π¦,π )}<[1,1] ππ π = π = { ππ β π1 π1 π π π1 π π π π 0 ππ‘βπππ€ππ π Ξ² β(π,ππ¦,π )<[1,1] ππ π = π = { π1 π π π π 0 ππ‘βπππ€ππ π (Ξ³ ΓΞ³ )β((π,π ),π₯,(π ,π))=(Ξ³ ΓΞ³ )β((π ,π ),ππ¦,(π ,π)) π1 π2 π π π π π1 π2 π π π π = β§ {(Ξ³ ΓΞ³ )((π,π ),π,(π ,π ))β¨(Ξ³ ΓΞ³ )β((π ,π ),π¦,(π ,π ))} (ππ, ππ ) β π1Γ π2 π1 π2 π π π π π1 π2 π π π π = β§ {Ξ³ (π, π, π ) β¨ (Ξ³ ΓΞ³ )β((π ,π ),π¦,(π ,π))} ππ β π1 π1 π π π1 π2 π π π π β§ {Ξ³ (π, π, π ) β¨ Ξ³ β(π ,π¦,π )}<[1,1] ππ π = π = { ππ β π1 π1 π π π1 π π π π 0 ππ‘βπππ€ππ π Ξ³ β(π,ππ¦,π )<[1,1] ππ π = π = { π1 π π π π 0 ππ‘βπππ€ππ π The result is follows by induction. The Proof is similar if π¦ β Ξ£ β. 2 Theorem 4.2 Let π =(π,Ξ£ ,π),π =1,2 be INA and let Ξ£ β© Ξ£ = β . Then β π₯ β Ξ£ β,π¦ β Ξ£ β, π π π π 1 2 1 2 (Ξ± ΓΞ± )β((π,π ),π₯π¦,(π ,π ))= Ξ± β(π,π₯,π) β§ Ξ± β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π = (Ξ± ΓΞ± )β((π,π ),π¦π₯,(π,π )) π1 π2 π π π π (Ξ² ΓΞ² )β((π,π ),π₯π¦,(π,π ))= Ξ² β(π,π₯,π) β¨ Ξ² β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π = (Ξ² ΓΞ² )β((π,π ),π¦π₯,(π,π )) π1 π2 π π π π (Ξ³ ΓπΎ )β((π,π ),π₯π¦,(π,π ))= Ξ³ β(π,π₯,π) β¨ Ξ³ β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π = (Ξ³ ΓΞ³ )β((π,π ),π¦π₯,(π,π )), π1 π2 π π π π (π,π ),(π,π )βπ Γπ . π π π π 1 2 Proof . 3710 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Let β Ξ£ β,π¦ β Ξ£ β, (π, π ),(π , π )βπ Γπ . If π₯ = π =π¦, then π₯π¦=π. Suppose (π, π )= 1 2 π π π π 1 2 π π (π , π ). Then π = π and π =π . Hence π π π π π π (Ξ± ΓΞ± )β((π,π ),π₯π¦,(π,π ))=[1,1]=[1,1] β§[1,1]= Ξ± β(π,π₯,π) β§ Ξ± β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π (Ξ² ΓΞ² )β((π,π ),π₯π¦,(π,π ))=[0,0]=[0,0]β¨[0,0]= Ξ² β(π,π₯,π)β¨Ξ² β(π,π₯,π) π1 π2 π π π π π1 π π π1 π π (Ξ³ ΓπΎ )β((π,π ),π₯π¦,(π,π ))=[0,0]=[0,0]β¨[0,0]= Ξ³ β(π,π₯,π)β¨ Ξ³ β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π If (π,π ) β (π,π ), then either π β π or π β π . π π π π π π π π Thus, Ξ± β(π,π₯,π) β§ Ξ± β(π ,π¦,π )=[0,0], Ξ² β(π,π₯,π)β¨Ξ² β(π,π₯,π)=[1,1], π1 π π π2 π π π1 π π π1 π π Ξ³ β(π,π₯,π)β¨ Ξ³ β(π ,π¦,π )=[1,1]. π1 π π π2 π π Hence (Ξ± ΓΞ± )β((π,π ),π₯π¦,(π,π ))=[0,0] = Ξ± β(π,π₯,π) β§ Ξ± β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π (Ξ² ΓΞ² )β((π,π ),π₯π¦,(π,π ))=[1,1]= Ξ² β(π,π₯,π)β¨Ξ² β(π,π₯,π) π1 π2 π π π π π1 π π π1 π π (Ξ³ ΓπΎ )β((π,π ),π₯π¦,(π,π ))=[1,1]= Ξ³ β(π,π₯,π)β¨ Ξ³ β(π ,π¦,π ) π1 π2 π π π π π1 π π π2 π π If x = π and y β π or x β π and y = π, then the result follows by Theorem 4.1. Suppose x β π and y β π. Now, (Ξ± ΓΞ± )β((π,π ),π₯π¦,(π ,π ))= β¨ {(Ξ± ΓΞ± )β((π,π ),π₯,(π,π))β§ π1 π2 π π π π (ππ, ππ) β π1Γ π2 π1 π2 π π π π (Ξ± ΓΞ± )β((π,π),π¦,(π,π ))} π1 π2 π π π π = β¨ {(Ξ± ΓΞ± )β((π,π ),π₯,(π,π ))β§ (Ξ± ΓΞ± )β((π,π ),π¦,(π ,π ))} ππ β π1 π1 π2 π π π π π1 π2 π π π π = Ξ± β(π,π₯,π ) β§ Ξ± β(π ,π¦,π ) π1 π π π2 π π (Ξ² ΓΞ² )β((π,π ),π₯π¦,(π,π ))= β§ {(Ξ² ΓΞ² )β((π,π ),π₯,(π,π))β¨ π1 π2 π π π π (ππ, ππ) β π1Γ π2 π1 π2 π π π π (Ξ² ΓΞ² )β((π,π),π¦,(π,π ))} π1 π2 π π π π = β§ {(Ξ² ΓΞ² )β((π,π ),π₯,(π,π ))β¨ (Ξ² Γπ½ )β((π,π ),π¦,(π,π ))} ππ β π1 π1 π2 π π π π π1 π2 π π π π = π½ β(π,π₯,π) β¨ π½ β(π ,π¦,π ) π1 π π π2 π π (Ξ³ ΓπΎ )β((π,π ),π₯π¦,(π,π ))= β§ {(Ξ³ ΓΞ³ )β((π,π ),π₯,(π,π))β¨ π1 π2 π π π π (ππ, ππ) β π1Γ π2 π1 π2 π π π π (Ξ³ ΓΞ³ )β((π,π),π¦,(π ,π ))} π1 π2 π π π π = β§ {(Ξ³ ΓΞ³ )β((π,π ),π₯,(π,π ))β¨ (Ξ³ ΓΞ³ )β((π,π ),π¦,(π,π ))} ππ β π1 π1 π2 π π π π π1 π2 π π π π = Ξ³ β(π,π₯,π) β¨ Ξ³ β(π ,π¦,π ) π1 π π π2 π π Similarly (Ξ± ΓΞ± )β((π,π ),π¦π₯,(π ,π ))= Ξ± β(π ,π¦,π ) β§ Ξ± β(π,π₯,π ) π1 π2 π π π π π2 π π π1 π π (Ξ² ΓΞ² )β((π,π ),π¦π₯,(π,π ))= π½ β(π ,π¦,π ) β¨ π½ β(π,π₯,π) π1 π2 π π π π π2 π π π1 π π (Ξ³ ΓπΎ )β((π,π ),π¦π₯,(π,π ))= Ξ³ β(π ,π¦,π ) β¨ Ξ³ β(π,π₯,π). π1 π2 π π π π π2 π π π1 π π Theorem 4.3 Let π =(π,Ξ£ ,π),π =1,2 be INA and let Ξ£ β© Ξ£ = β . Cartesian product of π Γπ is π π π π 1 2 1 2 cyclic iff π and π are cyclic. 1 2 Proof. Let π and π are cyclic. Then π =π(π) and π =π(π ) for some π βπ ,π β π . Let 1 2 1 π 2 π π 1 π 2 (π ,π) β π Γ π . Then β π₯ β Ξ£ β and π¦ β Ξ£ β such that π π 1 2 1 2 Ξ± β(π,π₯,π )>[0,0],Ξ² β(π ,π₯,π )<[1,1],Ξ³ β(π,π₯,π ) < [1, 1] and π1 π π π1 π π π1 π π Ξ± β(π ,π¦,π)>[0,0],Ξ² β(π ,π¦,π)<[1,1],Ξ³ β(π ,π¦,π) < [1, 1]. Thus π2 π π π2 π π π2 π π (Ξ± ΓΞ± )β((π,π ),π₯π¦,(π ,π))= Ξ± β(π,π₯,π ) β§ Ξ± β(π ,π¦,π)>[0,0] π1 π2 π π π π π1 π π π2 π π (Ξ² ΓΞ² )β((π,π ),π₯π¦,(π ,π))= Ξ² β(π,π₯,π ) β¨ Ξ² β(π ,π¦,π)<[1,1] π1 π2 π π π π π1 π π π2 π π (Ξ³ ΓπΎ )β ((π,π ),π₯π¦,(π ,π))= Ξ³ β(π,π₯,π ) β¨ Ξ³ β(π ,π¦,π)<[1,1]. π1 π2 π π π π π1 π π π2 π π Hence (π ,π) βπ((π,π )). π Γ π = π((π,π )). Hence π Γπ is cyclic. π π π π 1 2 π π 1 2 Conversely, let π Γπ is cyclic. Then π Γ π = π((π ,π )) for some (π,π )β π Γ π . 1 2 1 2 π π π π 1 2 Let π β π and π β π . Then β π€ β (Ξ£ βͺ Ξ£ )β such that π 1 π 2 1 2 (Ξ± ΓΞ± )β((π ,π ),π€,(π ,π))>[0,0], (Ξ² ΓΞ² )β((π,π ),π€,(π ,π))<[1,1] and π1 π2 π π π π π1 π2 π π π π (Ξ³ ΓπΎ )β ((π,π ),π€,(π ,π)) < [1, 1]. Then by the theorem 4.2 β π’ βΞ£ β and π£ β Ξ£ β such that π1 π2 π π π π 1 2 3711 Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3708-3712 Research Article Ξ± β(π,π’,π ) β§ Ξ± β(π ,π£,π)= (Ξ± ΓΞ± )β((π,π ),π€,(π ,π)) >[0,0] π1 π π π2 π π π1 π2 π π π π Ξ² β(π,π’,π ) β¨ Ξ² β(π ,π£,π)= (Ξ² ΓΞ² )β((π,π ),π€,(π ,π))<[1,1] π1 π π π2 π π π1 π2 π π π π Ξ³ β(π,π’,π ) β¨ Ξ³ β(π ,π£,π)= (Ξ³ ΓπΎ )β ((π ,π ),π€,(π ,π)) < [1, 1]. π1 π π π2 π π π1 π2 π π π π Hence β π’ βΞ£ β and π£ β Ξ£ β such that Ξ± β(π,π’,π ) >[0,0], Ξ² β(π,π’,π )<[1,1], Ξ³ β(π,π’,π ) <[1,1] 1 2 π1 π π π1 π π π1 π π and Ξ± β(π ,π£,π)>[0,0], Ξ² β(π ,π£,π)<[1,1],Ξ³ β(π ,π£,π)<[1,1]. Thus π βπ(π ) and π βπ(π ). π2 π π π2 π π π2 π π π π π π Hence π βπ(π) and π βπ(π ). Therefore π Γπ is cyclic. 1 π 2 π 1 2 5 Conclusion The purpose of this paper is to study the Cartesian product of INA. We prove that Cartesian product of cyclic of interval neutrosophic automata is cyclic. References [1] V. Karthikeyan, N. Mohanarao, and S. Sivamani, Generalized products of directable fuzzy Automata, Material Today: Proceedings, 37(2), 2021, 35313533. [2] V. Karthikeyan, and R. Karuppaiya, Retrievebility in Interval Neutrosophic Automata, Advance in Mathematics: Scientiο¬c Journal, 9(4), 2020, 1637-1644. [3] V. Karthikeyan, and R. Karuppaiya, Subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientiο¬c Journal, 9(4), 2020, 1653-1659. [4] V. Karthikeyan, and R. Karuppaiya, Strong subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientiο¬c Journal, 9(4), 2020, 1645-1651. [5] T. Mahmood, and Q. Khan, Interval neutrosophic ο¬nite switchboard state machine, Afr. Mat. 20(2), 2016, 191-210. [6] F. Smarandache, A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, set and Logic, Rehoboth: American Research Press, 1999. [7] H. Wang, F. Smarandache, Y.Q. Zhang, and R. Sunderraman, Interval Neutrosophic Sets and Logic, Theory and Applications in Computing, 5, 2005, Hexis, Phoenix, AZ. [8] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Proc. 1st Int. Joint Conf. North American Fuzzy Information Processing Society Biannual Conf., San Antonio, TX, USA, 1994, 305β309. [9] W. R. Zhang, YinYang bipolar fuzzy sets, Proc. IEEE World Congr. Computational Intelligence, Anchorage, Alaska, 1998, 835β840. [10] W. R. Zhang, NPN Fuzzy Sets and NPN Qualitative-Algebra: A Computational Framework for Bipolar Cognitive Modeling and Multiagent Decision Analysis, IEEE Trans. on Sys., Man, and Cybern. 26(8), 1996, 561-575. [11] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3), 1965, 338-353. 3712