loading

Logout succeed

Logout succeed. See you again!

ebook img

Classification of Arcs in Small Desarguesian Projective Planes PDF

pages234 Pages
release year2012
file size1.22 MB
languageEnglish

Preview Classification of Arcs in Small Desarguesian Projective Planes

Classification of Arcs in Small Desarguesian Projective Planes Classificatie van Bogen in Kleine Desarguesiaanse Projectieve Vlakken Heide Sticker Proefschriftingediendtothetbehalenvandegraadvan DoctorindeWetenschappen: Wiskunde Promotor: Prof. dr. dr. KrisCoolsaet June2012 FaculteitWetenschappen VakgroepToegepasteWiskundeenInformatica Contents 1 Introduction 1 2 Preliminaries 5 2.1 FiniteField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 ProjectivePlane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 ProjectiveLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Conic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Cubiccurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Informationongroups . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Arcswithlargeconicalsubsets 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Notationandpreliminarydefinitions . . . . . . . . . . . . . . . 22 i CONTENTS 3.3 ArcsoftypeIwithexcesstwo. . . . . . . . . . . . . . . . . . . . 30 3.4 ArcsoftypeEwithexcesstwo . . . . . . . . . . . . . . . . . . . 40 3.5 ArcsoftypeMwithexcesstwo . . . . . . . . . . . . . . . . . . . 49 3.6 ArcsoftypeIwithexcess3or4 . . . . . . . . . . . . . . . . . . 56 3.7 Arcswithexcessone . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.8 Computerresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Generationof (k,2)-and (k,3)-arcs 73 4.1 Isomorph-freegeneration . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Isomorph-freegenerationfor (k,3)-arcs . . . . . . . . . . . . . . 82 4.3 Isomorph-freegenerationfor (k,2)-arcs . . . . . . . . . . . . . . 89 4.4 Additionalremarks . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5 Consistencycheck. . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Results 97 5.1 Thecomplete (k,2)-arcsofPG(2,q), q 29 . . . . . . . . . . . . 98 ≤ 5.2 Geometricformsofthecomplete (k,2)-arcs . . . . . . . . . . . . 112 5.3 The (k,2)-arcs,notnecessarilycomplete . . . . . . . . . . . . . . 120 5.4 Thecomplete (k,3)-arcsofPG(2,q), q 13 . . . . . . . . . . . . 122 ≤ 5.5 Regular (k,3)-arcsofPG(2,q), q 13 . . . . . . . . . . . . . . . 127 ≤ ii CONTENTS 5.6 The (k,2)-and (k,3)-arcs,notnecessarilycomplete . . . . . . . 128 6 Special (k,2)-arcsinPG(2,q),q 29 131 ≤ 6.1 Well-knownconstructions . . . . . . . . . . . . . . . . . . . . . . 132 6.2 Somearcswithautomorphismgroup S . . . . . . . . . . . . . 133 4 6.3 Somearcswithautomorphismgroup A . . . . . . . . . . . . . 141 5 6.4 Special (k,2)-arcsfor q =8 . . . . . . . . . . . . . . . . . . . . . 145 6.5 Special (k,2)-arcsfor q =9 . . . . . . . . . . . . . . . . . . . . . 146 6.6 Special(k,2)-arcsfor q =11 . . . . . . . . . . . . . . . . . . . . . 147 6.7 Special(k,2)-arcsfor q =13 . . . . . . . . . . . . . . . . . . . . . 147 6.8 Special (k,2)-arcsfor q =16 . . . . . . . . . . . . . . . . . . . . . 149 6.9 Special(k,2)-arcsfor q =17 . . . . . . . . . . . . . . . . . . . . . 150 6.10 Special(k,2)-arcsfor q =19 . . . . . . . . . . . . . . . . . . . . . 153 6.11 Special(k,2)-arcsfor q =23 . . . . . . . . . . . . . . . . . . . . . 154 6.12 Special(k,2)-arcsfor q =25 . . . . . . . . . . . . . . . . . . . . . 156 6.13 Special(k,2)-arcsfor q =27 . . . . . . . . . . . . . . . . . . . . . 158 6.14 Special(k,2)-arcsfor q =29 . . . . . . . . . . . . . . . . . . . . . 162 7 Special (k,3)-arcsinPG(2,q),q 13 167 ≤ 7.1 Somearcswithautomorphismgroup S . . . . . . . . . . . . . 168 4 iii CONTENTS 7.2 (k,3)-arcsfromhalfconics . . . . . . . . . . . . . . . . . . . . . . 173 7.3 (k,3)-arcsfromcubiccurves . . . . . . . . . . . . . . . . . . . . . 178 7.4 Special(k,3)-arcsfor q =7 . . . . . . . . . . . . . . . . . . . . . . 184 7.5 Special(k,3)-arcsfor q =8 . . . . . . . . . . . . . . . . . . . . . . 185 7.6 Special(k,3)-arcsfor q =9 . . . . . . . . . . . . . . . . . . . . . . 187 7.7 Special(k,3)-arcsfor q =11 . . . . . . . . . . . . . . . . . . . . . 190 7.8 Special(k,3)-arcsfor q =13 . . . . . . . . . . . . . . . . . . . . . 193 8 Generationof (k,2)-arcsfromconicalsubsets 199 8.1 Isomorph-freegenerationfromconicalsubsets . . . . . . . . . . 200 8.2 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Nederlandstaligesamenvatting 209 Dankwoord 215 Bibliography 219 iv

See more

The list of books you might like