Logout succeed
Logout succeed. See you again!

Coding Theory Quiz 1's solutions (2006) PDF
Preview Coding Theory Quiz 1's solutions (2006)
Department of Mathemati s, Mahidol University Kit Tyabandha, PhD Quiz 1 Coding Theory th 20 January 2006 Time: 1 hours (12:30{1:30pm) 1. Write the addition [3℄y and multipli ation [4℄ tables for Z6. Solution.The addition table, + 0 1 2 3 4 5 0 0 1 2 3 4 5 1 1 2 3 4 5 0 2 2 3 4 5 0 1 3 3 4 5 0 1 2 4 4 5 0 1 2 3 5 5 0 1 2 3 4 # The multipli ation table, (cid:1) 0 1 2 3 4 5 0 0 0 0 0 0 0 1 0 1 2 3 4 5 2 0 2 4 0 2 4 3 0 3 0 3 0 3 4 0 4 2 0 4 2 5 0 5 4 3 2 1 # 2. Given ISBN 0198538 30. Find the missing digit .[3℄ Solution.ForISBN x1:::x10, X10 ixi (cid:17)(mod11) i=1 Writing y for , 0+1(2)+9(3)+8(4)+5(5)+3(6)+8(7)+y(8)+3(9)=187+8y (cid:17)0(mod11) Hen e y =0, and the ISBN is therefore 0198538030. # 2 3 3. Let f(x)=1+x +x . Showwhetherf(x) isirredu ible overZ2.[4℄Then (cid:12)nd Z2[x℄=(f(x)).[4℄ And then draw the addition [5℄ and multipli ation [7℄ tables of Z2[x℄=(f(x)). Solution.Wenotethatf(x)isofdegree3. Supposef(x)beredu ible. Thenitwouldhavealinear fa tor x or 1+x, whi h would make 0 and 1 roots of f(x). But g(0) = g(1) = 1, whi h is in Z2. Therefore f(x) is irredu ible. # (cid:0) (cid:1) (cid:8) (cid:9) 2 3 2 2 2 2 Z2[x℄= 1+x +x = 0;1;x;1+x;x ;x+x ;1+x ;1+x+x # y Numbers between square bra kets are marks. th Coding theory, Quiz 1 {1{ From 19 Jan 05, as of 20 January, 2006 Department of Mathemati s, Mahidol University Kit Tyabandha, PhD The addition table, 2 2 2 2 + 0 1 x 1+x x x+x 1+x 1+x+x 2 2 2 2 0 0 1 x 1+x x x+x 1+x 1+x+x 2 2 2 2 1 1 0 1+x x 1+x 1+x+x x x+x 2 2 2 2 x x 1+x 0 1 x+x x 1+x+x 1+x 2 2 2 2 1+x 1+x x 1 0 1+x+x 1+x x+x x 2 2 2 2 2 x x 1+x x+x 1+x+x 0 x 1 1+x 2 2 2 2 2 x+x x+x 1+x+x x 1+x x 0 1+x 1 2 2 2 2 2 1+x 1+x x 1+x+x x+x 1 1+x 0 x 2 2 2 2 2 1+x+x 1+x+x x+x 1+x x 1+x 1 x 0 # The multipli ation table, 2 2 2 2 (cid:1) 0 1 x 1+x x x+x 1+x 1+x+x 0 0 0 0 0 0 0 0 0 2 2 2 2 1 0 1 x 1+x x x+x 1+x 1+x+x 2 2 2 2 x 0 x x x+x 1+x 1 1+x+x 1+x 2 2 2 2 1+x 0 1+x x+x 1+x 1 1+x+x x x 2 2 2 2 2 x 0 x 1+x 1 1+x+x x 1+x x+x 2 2 2 2 2 x+x 0 x+x 1 1+x+x x 1+x x 1+x 2 2 2 2 2 1+x 0 1+x 1+x+x x 1+x x x+x 1 2 2 2 2 2 1+x+x 0 1+x+x 1+x x x+x 1+x 1 1+x # th Coding theory, Quiz 1 {2{ From 19 Jan 05, as of 20 January, 2006