loading

Logout succeed

Logout succeed. See you again!

ebook img

Component Games on Regular Graphs PDF

file size0.16 MB
languageEnglish

Preview Component Games on Regular Graphs

Component Games on Regular Graphs RaniHod AlonNaor† ∗ Abstract Westudythe(1:b)Maker–Breakercomponentgame,playedontheedgesetofad-regulargraph. MAKER’saim inthisgameistobuildalargeconnectedcomponent,whileBREAKER’saimistonotlethimdoso. Forallvaluesof 3 BREAKER’sbiasb,wedeterminewhetherBREAKERwins(onanyd-regulargraph)orMAKERwins(onalmostevery 1 d-regulargraph)andprovideexplicitwinningstrategiesforbothplayers. 0 Tothisend,weproveanextensionofatheorembyGallai–Hasse–Roy–Vitaveraboutgraphorientationswithout 2 longdirectedsimplepaths. n a J 1 Introduction 2 LetX beafiniteset,letF 2X beafamilyofsubsetsofX,andletm,bbetwopositiveintegers.Inthe(m:b)Maker– O] Breakergame(X,F),twop⊆layers,calledMAKERandBREAKER,taketurnsinclaimingpreviouslyunclaimedelements ofX. OnMAKER’smove,heclaimsmelementsofX,andonBREAKER’smove,heclaimsbelements.1 Thegameends C whenalloftheelementshavebeenclaimedbyeitheroftheplayers.Thedescriptionofthegameiscompletebystating . h whichoftheplayersisthefirsttomove,thoughusuallyitmakeslittledifference. MAKERwinsthegame(X,F)ifby at theendofthegamehehasclaimedalltheelementsofsomeF F;otherwiseBREAKERwins.2 Sincethesearefinite, ∈ m perfectinformationgameswithnopossibility ofdraw,foreachsetupofF,m,b andtheidentityofthefirstplayer, oneoftheplayershasastrategytowinregardlessoftheotherplayer’sstrategy. Therefore,foragivengamewemay [ saythatthegameisMAKER’swin,oralternativelythatitisBREAKER’swin.ThesetX isreferredtoastheboardofthe 1 game,andtheelementsofF arereferredtoasthewinningsets. v When m b 1, we say that the game is unbiased; otherwise it is biased, and the positive integers m and b 2 = = 8 are called the bias of MAKER and BREAKER, respectively. Maker–Breaker games are bias monotone. It means that 2 if MAKER wins some game with bias (m :b), he also wins this game with bias (m′ :b′), for every m′ m, b′ b. ≥ ≤ 0 Similarly, if BREAKER wins a game with bias (m :b), he also wins this game with bias (m′ :b′), for every m′ m, . ≤ 1 b′ b. Indeed,supposethatsomeplayerhasawinningstrategywithbiasc,andnowheplayswithbiasc′ c. He ≥ > 0 canusehisoldstrategyandinadditionclaimarbitrarilyc cextraelementspermoveandpretendhedidnotclaim ′ 3 them; whenever his strategy tells him to claim some elem−ent he has previously claimed he just claims arbitrarily 1 some unclaimed element. Similarly, if his opponent claims less elements, he can assign (in his mind) some extra : v elementstohisopponentineachmove,andcontinuewithhisstrategy. Thesamereasoningshowsthatitisnevera Xi disadvantageinaMaker–Breakergametobethefirstplayer,andawinningstrategyasasecondplayercanbeusedas awinningstrategyasafirstplayer.Thisbiasmonotonicityallowsustodefinethethresholdbias:foragivengameF, r a thethresholdbiasb∗isthevalueforwhichMAKERwinsthegameF withbias(1:b)foreveryb b∗,andBREAKER ≤ winsthegameF withbias(1:b)foreveryb b . ∗ > Inthispaper,ourattentionisdedicatedtothe(1:b)Maker–Breakers-componentgameonregulargraphs;thatis, theboardistheedgesetofsomed-regulargraphGonnverticesandthewinningsetsareconnectedcomponentsof Gwithsvertices. 1.1 Previousresults Anaturalcasetoconsideriss n;thatis,thewinningsetsarethespanningtreesofG.This(1:b)n-componentgame = isalsoknownastheconnectivitygame. TheunbiasedgamewascompletelysolvedbyLehman[13],whoshowedthatMAKERwinsthe(1:1)connectivity gameonagraphGifandonlyifGcontainstwoedgedisjointspanningtrees.Itfollowseasilyfrom[16,19]thatifGis ∗School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: [email protected]. †SchoolofMathematicalSciences,RaymondandBeverlySacklerFacultyofExactSciences,TelAvivUniversity,TelAviv,Israel. E-mail: alon- [email protected]. 1Theplayerwhomakestheverylastmovemaynotbeabletocompletem(orb)steps,sohestopsafterclaimingallremainingelements. 2Forconvenience,wetypicallyassumethatFisclosedupwards,andspecifyonlytheinclusion-minimalelementsofF. 1 2k-edge-connectedthenitcontainskpairwiseindependentspanningtrees;thus,MAKERwinsthe(1:1)connectivity gameon4-regular4-edge-connectedgraphs,whereasBREAKERtriviallywinsthe(1:1)connectivitygameongraphs withlessthan2n 2edges,i.e.,averagedegreeunder4 O(1/n). − − Fordensergraphs,sinceMAKERwinstheunbiasedgamebysuchalargemargin,itonlyseemsfairtoevenoutthe oddsbystrengtheningBREAKER,givinghimabiasb 2.Firstandmostnaturalboardtoconsideristheedgesetofthe ≥ completegraphKn(i.e.,d=n−1).ChvátalandErdo˝s[4]showedthat 14−o(1) n/logn≤b∗(Kn)≤(1+o(1))n/logn; theupperboundwasprovedtobetightbyGebauerandSzabó[7];th¡atis,b∗¢(Kn)=(1+o(1))n/logn. Thedoubly- biased connectivity game(m:b)onKn wasconsideredbyHefetzetal.[10], wherethewinner wasdetermined for almostallvaluesofmandb. Anothernaturalboardtoconsideristheedgesetofarandomgraph. Stojakovic´ andSzabó[18]consideredthe well knownErdo˝s–Rényi random graph G , in which each of the n possible edges appears independently with n,p 2 probabilityp. Theyshowedthatalmostsurelyb∗ Gn,p =Θ np/logn¡ ¢,whereBREAKER’swinholdsforany0≤p≤1 whileMAKER’swinrequiresp≥(1+o(1))logn/nf¡orGn¢,p tob¡eforemos¢tconnected.Adifferentrandomgraphmodel, therandomd-regulargraphG onn vertices,wasconsideredbyHefetzetal.[9]. Theyshowedthatalmostsurely n,d b∗ Gn,d ≥(1−ǫ)d/log2n for d =o pn .3 Moreover, they showed that b∗(G)≤max 2,d¯/logn for a graphG of averagedegreed¯,sotheresultisasymptoticallytight. ¡ ¢ ¡ ¢ © ª BREAKER’sstrategyinpracticallyallresultsmentionedaboveistodenyconnectivitybyisolatingasinglevertex. Muchlessisknown,however,forthecases n. ItseemsthatevenifBREAKERisabletoisolateavertexinaconstant < numberofmoves,itdoeslittletopreventMAKERfromwinningthes-componentgamefors Ω(n). = 1.2 Ourresults Insteadofconsideringthethresholdbiasb∗,weshiftthefocustothemaximalcomponentsizesachievablebyMAKER inthe(1:b)game,foragivenbiasb.Letusdenotethisquantitybysb∗(G),andlet,ford≥3, sb∗(n,d)=max sb∗(G):Gisad-regulargraphonnvertices . © ª For b 2d 2, BREAKER can immediately isolate each edge claimed by MAKER in the (1:b) game, so trivially ≥ − sb∗(G)=2.Furthermore,BREAKERcandosomethingsimilarwhileb>d−2,asthefollowingpropositionshows: Proposition1. Foranypositivek,sd∗ 2 k(n,d)≤2⌈d/k⌉. − + Inthe(1:d 2)game,BREAKERcanstillrestrictthesizeofMAKER’sconnectedcomponents. − Theorem2. sd∗ 2(n,d)≤αd+βdlogn,whereαd andβd dependonlyond. − Remark. Ourproofyieldsα O d2 andβ O d/loglogd . d d = = TheproofofTheorem2relies¡ont¢hefollowing¡combinator¢iallemma,whichmaybeofindependentinterest. Lemma3. LetGbeagraphonnverticeswithminimaldegreeδ 3.Then,thereexistsanorientationDofGsuchthat ≥ everyvertexhasapositiveout-degreeandallsimpledirectedpathsinD areoflengthatmostχ(G) κ logn, where δ + κ O 1/loglogδ . δ = Remark¡. Notetha¢t sb∗(Tb+1(k))≥k, whereTr(k) isthe complete r-arytree4 withk levels, since MAKER caneasily buildapathfromtheroottosomeleaf. CompletingT (k)toad-regulargraphonn (d 1)k verticesthusshows d 1 − = − thatsd∗−2(n,d)≥logd−1n. TocomplementTheorem2,weprovethatinthe(1:d 3)gameonalmosteverygraph,MAKERcanalreadybuild − averylargeconnectedcomponent. Theorem4. LetG betherandomd-regulargraphonnvertices,whered 3.Then,s G ǫ nalmostsurely, n,d ≥ d∗ 3 n,d ≥ d whereǫd>0dependsonlyond.Inparticular,sd∗ 3(n,d)≥ǫdn. − ¡ ¢ − Remark. Aquickcalculationshowsthatǫ poly(1/d). d ≥ Whend isatmostpolylogarithmicinn,Theorems2and4showaphasetransitionphenomenonthatoccursat b d 2;insteadoftiny,polylogarithmic-sizedcomponents,MAKERissuddenlyabletobuildagiant,almostlinear- = − sizedcomponent.Whend isconstant,weevenhaveadouble-jump—fromconstant,throughlogarithmic,tolinear- sizedcomponents.ThisissummarizedinFigure1. 34BTyhactoins,ceevnetrraytnioonno-lfetahfevebritneoxmhiaaslrdicshtrilidbruetnio.n,whend=Ω pn ,Gn,disquiteclosetoGn,pforp=d/n. ¡ ¢ 2 Θ(1), b d 2; > − Θ polylogn , b d 2; sb∗(n,d)=ΘΘ¡(nlo)g,n¢, bb=dd−22;. sb∗(n,d)=(Θ¡n/polylog¢n , b≥<d−−2. < − ¡ ¢ (a)d=Θ(1) (b)d=O polylogn ¡ ¢ Figure1:Phasetransitionphenomenonatb d 2 = − Thisbehaviorissomewhatconsistentwiththeso-calledrandomgraphintuitioninpositionalgames:oftentimes, theoutcomeofagamebetweentwointelligentplayersisthesameastheoutcomeofthatgamebetweentwoplayers acting randomly. Consider the bond percolation with parameter p (i.e., each edge is deleted independently with probability1 p).Itisknown(see,e.g.,[2,15])thatforwell-expandingd-regulargraphs,whered isconstant,thesize − ofthelargestconnectedcomponenthasadouble-jumpatp=d11 —itislinearforp≥ d1+ǫ1,logarithmicforp≤ d1−ǫ1, andΘ n2/3 forp 1 . − − − =d 1 Alt¡houg¢hthesizes−ofthecomponentsaredifferent,boththebondpercolationandsb∗(n,d)haveasharpthreshold atthesamepoint,sinceinarandomplayofa(1:b)game,MAKERgetseachedgewithprobability 1 1 .5 1 b =d 1 + − 1.3 Notation WeusestandardGraphTheoryterminology,andinparticularusethefollowing: ForagivengraphG wedenotebyV(G)andE(G)thesetofitsverticesandthesetofitsedges,respectively. We oftenjustuseV andE,whenthereisnochanceofconfusion. Fortwodisjointsetsofvertices A,B V wedenoteby ⊆ E(A,B)thesetofalledges(a,b) E witha Aandb B.ForaconnectedcomponentSinMAKER’sgraph,andforan ∈ ∈ ∈ edgee E wesaythateisincidenttoSifatleastoneofitsendpointsbelongstoS;ifbothendpointsofebelongtoS, ∈ wesaythateisinsideS. WhenGisadirectedgraph,wesaythatavertexv isreachablefromavertexuifthereisadirectedpathinGfrom utov. Anunclaimededgeiscalledfree. Theactofclaimingonefreeedgebyoneoftheplayersiscalledastep. MAKER’s m (BREAKER’s b) successive steps arecalled a move. A round in the game consists of onemove of the firstplayer, followedbyonemoveofthesecondplayer. WheneverMAKERclaimsafreeedge,itbecomespartofsomeconnected componentofhis;wethensayhetouchedthatcomponent. IfaconnectedcomponentinMAKER’sgraphhasatleast onefreeedgeadjacenttoit,wesayitisalivecomponent. Asmentionedbefore,ifoneoftheplayershasawinningstrategyasasecondplayer,hecanuseittoobtainawin- ningstrategyasafirstplayer.Hence,whenwedescribeMAKER’sstrategyweassumethatheisthesecondplayer,im- plyingthatunderthedescribedconditionshecanwinaseitherafirstorasecondplayer.ThesamegoesforBREAKER’s strategy. 2 MAKER’sstrategy ThroughoutthissectionweassumethatthefirstplayerisBREAKER. InthissectionwedescribeandanalyzeaverybasicstrategyforMAKER,towhichwereferthroughoutthepaper asthe treestrategy. MAKER’s goalistobuilda component ofsize s, and hisstrategy istobuilda singleconnected componentT. Hestartsfromasinglearbitraryvertexr,andineverymoveheaddsanewvertextoT byclaiminga freeedgee E(T,V \T). IfalledgesinE(T,V \T)havealreadybeenclaimedbyBREAKER,andMAKER’scomponent ∈ isofsizestrictlylessthans,heforfeitsthegame.NotethatindeedT isatreethroughoutthegame. Definition. LetG (V,E)beagraphonnvertices.Foranintegerk 1,2,..., n/2 ,wedefine = = ⌊ ⌋ E(S,V \S) ΨE(G,k) min | |:S V,1 S k . = S ⊆ ≤| |≤ ½ | | ¾ Consideredasafunctionofk,i.e.,whenGisfixed,Ψ issometimescalledtheedgeisoperimetricprofile. E Thenext proposition showsthatifthegraphhasgoodexpanding properties, then BREAKER cannotseparate T fromV \T unlessT islargeenough. Proposition5. AssumeΨE(G,k) b.ThenMAKERisabletocarryoutthetreestrategyforatleastkroundsinthe(1:b) > gameonthegraphG. 5Thisrandomgraphintuitionisnotaformalargument,soweallowourselvestoneglectthedependenceoftheserandomchoices. 3 Proof. ConsiderthemomentbeforeMAKER’sjthmoveforsome1 j k.Wehave T j kandthus E(T,V \T) ≤ ≤ | |= ≤ | |> T b jb.Duringjmoves,BREAKERcouldhaveclaimedatmostjbedges,sosomeedgeofE(T,V \T)isstillavailable | | = forMAKERtoclaim. SinceweonlyneedMAKER’sconnectedcomponenttospanaconstantfractionofthegraph,wecanmakeuseof thefollowingresultontheedgeexpansionofsmallsetsintherandomd-regulargraph: Lemma 6 ([11], Theorem 4.16). Let d 3 be an integer and let δ 0. Then there exists ǫ ǫ(d,δ) 0 such that ≥ > = > Ψ G ,ǫn d 2 δalmostsurely. E n,d > − − ¡Takingδ¢ 1inLemma6andemployingthetreestrategyyieldsTheorem4. = Remark7. Lemma6isstrongenoughtorenderthetreestrategyeffectivealsointhedoubly-biased(m:b)game,as longasb/m d 2. TheproofiscompletelyanalogoustotheproofofProposition5whenMAKERisthefirstplayer, < − andverysimpleadjustmentsareneededwhenBREAKERstarts. 3 BREAKER’sstrategy ThroughoutthissectionweassumethatthefirstplayerisMAKER. 3.1 Reactivestrategies Definition. AstrategyofBREAKERiscalledreactiveifthefollowingholds: ineachofhissteps,iftheconnectedcom- ponentlasttouchedbyMAKERislive,BREAKERclaimsafreeedgeincidenttoit. NotethattherecanbemanyreactivestrategiesforBREAKER,varyinginthewaythathechooseswhichfreeedge to claim among those that are incident to MAKER’s last touched component. In this paper, we limit ourselves to reactiveBREAKERstrategies;thisallowsBREAKERtocontrolthenumberoffreeedgesincidenttoMAKER’sconnected components,asthefollowingclaimshows: Claim8. Letb,dbepositiveintegersandletGbead-regulargraph.If BREAKERusesareactivestrategy,thenthroughout the(1:b)Maker–BreakergameplayedontheedgesetofG,atthebeginningofeachroundeveryconnectedcomponent SinMAKER’sgraphisincidenttoatmost(d 2 b) S b 2freeedges. − − | |+ + Proof. Theclaimtriviallyholdsatthebeginningofthegame,aseveryconnectedcomponentisasinglevertex,and vertexdegreesinGareallequaltod.Ineverymove,MAKEReither: (a) claimsanedgeinsidesomecomponent;or (b) merges two connected components, i.e., claims a free edge betweentwo connected components S and S , 1 2 creatinganewconnectedcomponentSofsize S S S . 1 2 | |=| |+| | Inthefirstcase,theclaimtriviallyholdsnomatterhowBREAKERplays.Inthesecondcase,Si (fori 1,2)wasincident = beforeMAKER’smovetoatmost(d 2 b) Si b 2freeedges.AsMAKERhasjustclaimedanedgeincidenttoboth − − | |+ + S1andS2,afterMAKER’smoveatmost(d 2 b) S 2(b 2) 2freeedgesareincidenttothemergedcomponentS. − + | |+ + − BREAKER inhisnextmoveclaimsb oftheseedges(orsimplyallofthem,iftherearelessthanthat),leavingatmost (d 2 b) S 2(b 2) 2 b (d 2 b) S b 2freeedgesincidenttoS,sotheclaimstillholds. − − | |+ + − − = − − | |+ + WecannowproveProposition1. ProofofProposition1. ByClaim8wegetthatbyusinganyreactivestrategy,BREAKERcanmakesurethateverycom- ponentSinMAKER’sgraphwillhaveatmost k S k d freeedgesincidenttoit. Inparticular,k d k S forany − | |+ + + > | | livecomponent S,orequivalently S (d/k) 1. This lastinequality mayberewrittenas S d/k . Sinceevery | |< + | |≤⌈ ⌉ componentinMAKER’sgraphwascreatedbymergingtwolivecomponents,theresultfollows. Remark. Forfixeddandk,theboundofProposition1istightforlargeenoughn,viathetreestrategyonG . n,d Remark9. ReactivestrategiesareeffectiveforBREAKERalsointhedoubly-biased(m:b)game,aslongasb/m d 2. > − AproofverysimilartotheoneaboveshowsthatBREAKERcanlimitMAKERinthe(m:m(d 2) k)gametoconnected − + componentsofsizeatmost(m 1) md/k . + ⌈ ⌉ 4 3.2 Playingagainstthetreestrategy Beforepresentingafull-fledgedstrategyforBREAKERinthe(1:d 2)game,letusfirstconsiderasimplifiedversionof − it,whichremainseffectiveaslongasMAKERadherestothetreestrategyofSection2.TakingClaim8onestepfurther, BREAKER needstomakesurethat,beforeMAKER’streeT growstoomuch,theonlyfreeedgesincidenttoitwillbe edgesinsideT.Thisgivesrisetothefollowingdefinition: Definition. LetG beagraph. Asimple path p v v v inG iscalled self-colliding if v isadjacenttosome v 1 2 k k i = ··· for1 i k 2. Wecouldalsoviewp asasimplepathv v v ,whichwecallthetail,leadingtoasimplecycle 1 2 i 1 v v ≤ ≤v v−,whichwecallthebody.6 ··· − i i 1 k i + ··· WeusethefollowingvariationoftheMooreboundonthegirthofgraphswithminimumdegreek. Lemma10. LetG beagraphonn verticeswithminimumdegreeδ(G) k. Then,foreveryedge(u,v) E,thereisa ≥ ∈ self-collidingpathpstartingwith(u,v)oflengthatmost2 log n .Inparticular,g(G) 2 log n .Moreover,the distancealongpfromutoeverybodyvertexisatmost log nk−.1 ≤ k−1 k§ 1 ¨ § ¨ − Proof. Thenumberofnon-backtrackingwalksofleng§th j 1s¨tartingwiththeedge(u,v)is(k 1)j.Sincethegraph + − onlyhasnvertices,thereexisttwodistinctnon-backtrackingwalksoflengthsi 1andj 1endingatthesamevertex, + + wherei j log n . Together, thesewalksforma(notnecessarily simple) cycleoflengthatmost2 log n passingt≤hrou≤ghv.kN−o1wtakeanysimplesubcycleofittobep’sbodyandconnectitbacktouviaasimplepath.k−1 § ¨ § ¨ WenowdescribeBREAKER’sstrategy.AfterMAKER’sfirstmove,BREAKERchoosesarbitrarilyoneofthetwovertices MAKERhasjusttouchedanddenotesitbyu. BREAKERthenusesLemma10topick,foreachneighborv ofu,aself- colliding path pv oflengthatmost2 logd 1n beginningwiththeedge(u,v). Notethatthepathschosenfortwo neighborsv,v arenotnecessarilydisjoint.− ′ § ¨ NowBREAKER’sstrategyistoallowMAKERtoclaimonlyedgesfromP pv:(u,v) E ;thiswouldlimitthesize =∪ ∈ ofMAKER’sconnectedcomponenttobeatmost|P|≤2d logd−1n . © ª Proposition11. Inthe(1:d 2)gameonG,if MAKERfoll§owsthetr¨eestrategy,BREAKERisabletocarryoutthecounter- − strategy. Proof. WeshowthatBREAKERcanensurethatbeforeeverymoveofMAKER,theonlyfreeedgesinE(T,V \T)arein P;thus,MAKERmustclaimanedgeofP,advancingalongsomepv.ItistrueatthebeginningofthegameasT {u}. = AfterMAKERclaimstheedge(vi 1,vi) pv,thereareatmostd 2freeedgesincidenttovi inE(T,V \T)\P,since − ∈ − (vi 1,vi)hasjustbeenclaimedand(vi,vi 1) P. BREAKER canclaimallofthem(and,ifnecessary,somearbitrary − + ∈ extraedgesoutsideP).Thus,aftergettingaspanningtreeT P,MAKERforfeits. ⊂ Thecounter-strategyisstilleffectivewhenMAKERbuildsaforestwithmanytrees,aslongasoneoftheconnected componentsmergedisalwaysasinglevertex;nevertheless,itbreaksdownwhenMAKERbuildsupmanysmalltrees andconnectsthemonetotheother,avoidinggettingtothecollisionattheendoftheself-collidingpaths. BREAKER couldpossiblydenyamergeoftwotreesT andT byforgoingthecounter-strategyandclaimingthefreeedgebetween ′ T andT′,butthismightletMAKERescapefromtherespectiveP orP′. 3.3 Playingagainstanystrategy WenowdescribeaglobalstrategyforBREAKER,whichcopeswellwithMAKERmergingconnectedcomponentsofany size. Beforestartingthe(1:d 2)game, BREAKER usesLemma 3topickanorientationD ofthegraphG suchthat − everyvertexhasapositiveout-degreeandallsimpledirectedpathsinD areoflengthatmostd κ logn. Notethat d + BREAKERmayaswellrevealDtoMAKER. ThestrategyofBREAKERgoesasfollows.WithoutlossofgeneralitywemayassumethatMAKER’sstrategyisalways tobuildaforest,sinceclaiminganedgewithinaconnectedcomponentdoesnothelpMAKER.7 Thus,oneachmove MAKERmergestwotreesT1andT2toasingletreeT byclaimingafreeedgefromT1toT2.BREAKERthenclaimsd 2 − freeedgesaccordingtothefollowingpriorities: 1. E(V \T,T2); 2. E(V \T,T1); 3. E(T,V \T). 6Itispossiblethatthetailisempty,thatis,pisacycleoflengthk. 7Formally,MAKERclaimsedgesinsidehisconnectedcomponentsonlywhenallremainingfreeedgesaresuch;bythistime,theoutcomeofthe gamehasalreadybeendetermined. 5 Ineachstep,BREAKERclaimsanarbitraryfreeedgefromthesetwiththesmallestindex.Ifthereisnofreeedgeamong thesesets,hejustclaimsanarbitraryfreeedge. Claim12. EachtreeT inMAKER’sgraphisadirectedtreeinD;thatis,thereissomer T —whichwedenotebytheroot ∈ ofT —suchthateveryvertexinT isreachablefromr. Moreover,atthebeginningofeachround(i.e.,after BREAKER’s move),nofreeedgesenterT\{r}. Proof. Theclaimistriviallytrueatthebeginningofthegame,astheinitialconnectedcomponentsaresinglevertices, soeveryvertexistherootandonlymemberofitsowndirectedtree.SupposenowthatMAKERmergedT1andT2,two treeswithrootsr andr ,respectively,byclaiminganedgefromT toT . Byourassumption,beforethemergethe 1 2 1 2 onlyfreeedgesenteringT1andT2wereintor1andr2,respectively.Hence,MAKERmusthaveclaimedanedgeintor2. Clearly,themergedcomponentisadirectedtree,andallverticesinT T arenowreachablefromr ,whichbecomes 1 2 1 ∪ the rootofthe new tree. Furthermore, thein-degreeof every vertexinD, andinparticular ofr , isatmost d 1, 2 − soBREAKER’spreferencetowardsE(V \T,T2)ensuresthatalltheedgesenteringr2areclaimedafterBREAKER’smove (onebythemergeandalltherestbyBREAKER),andsoallthefreeedgesenteringthenewtreeenteritsroot. ItisbeneficialtoclassifyMAKER’streesbythenumberoffreein-edges. Definition. ThetypeofatreeT inMAKER’sgraphisthenumberoffreeedgesinE(V \T,T). By Claim 12, the type of a tree is bounded by the in-degree of its root, so the possible types are 0,1,...,d 1. − Claim12alsoenablesustopartiallyordertheverticesineachtree,givingrisetothefollowingdefinition: Definition. LetT beatreeinMAKER’sgraph.Theheightofavertexv T,denotedbyh(v),isthelengthofthe(unique) ∈ pathr v inT,wherer istherootofT;theheightofanedge(u,v) E(T,V \T)ish(u,v) h(u);theheightofT, ∈ = denotedh(T),isthemaximumheightoverallv T. ∈ WewishtoboundthesizeofMAKER’strees. BythechoiceofD,weknowthatthetreesarenottoo“high”,butwe alsoneedtoensuretheydonotbecometoo“wide”. Forthis,werefineBREAKER’sstrategyabit. InthetreeT justcreatedbyMAKER, BREAKER claimsin-edgesfrom highesttolowest,andthenout-edgesfromlowesttohighest.Inmoredetail,ineachstepBREAKERclaimsanincoming freeedge x,y E(V \T,T)suchthath y ismaximal,ifpossible;otherwiseheclaimsanoutgoingfreeedge x,y ∈ ∈ E(T,V \T)suchthath x,y h(x)isminimal.Inbothcases,tiesarebrokenarbitrarily. ¡ ¢ = ¡ ¢ ¡ ¢ BREAKER’spreferenceofclaiminglowout-edgesgivesthefollowing: ¡ ¢ Claim13. LetT beatreeinMAKER’sgraph. Iftheedgee E(T,V \T)wasclaimedbyBREAKER,thenh e′ h(e)for ∈ ≥ everyfreeedgee′∈E(T,V \T). ¡ ¢ Proof. NotefirstthatifBREAKERhasclaimedanedge(u,v) E(T,V \T)forsometreeT,thenfromthatpointuntil ∈ theendofthegameuwillonlybelongtotreesoftypezero. Indeed,accordingtohisstrategy,BREAKERhasclaimed (u,v)onlysincetherewerenofreeedgesenteringT,soatthatpointT isoftypezero. Furthermore,byClaim12we havethatatanypointuntiltheendofthegameuwillonlybelongtotreesrootedatT’sroot,implyingthattheywillbe oftypezeroaswell.Therefore,Claim13triviallyholdswhenthetypeofT ispositive,sincethatimpliesthatBREAKER hasclaimedonlyedgesenteringT.WethusassumeT isoftypezero. Atthemoment BREAKER claimse, thereisnoedgelowerthane amongalledgesinE(T,V \T). Insubsequent rounds,theonlychangestoE(T,V \T)(andtoT)arewhenMAKERclaimssomeedgee′fromT toanothertreeT′.The heightofallverticesofT′inthemergedtree,andthusalsoofallnewedgesinE(T,V \T),isatleasth e′ 1 h(e). + > Recallthatinthecounter-strategytothetreestrategy,BREAKERonlyallowedMAKERtopursuese¡lf-c¢ollidingpaths, soMAKER’sfinalcomponentconsistedofd pathspv sharingarootvertex. Here,similarly,BREAKER’sstrategyallows MAKERtoextendeveryfreeedgeinE(T,V \T)toadirectedpath.Thismotivatesthefollowingdefinitionofwidth: Definition. LetT beatreeinMAKER’sgraph.Thei-widthofT,denotedwi(T),isthenumberofverticesinT ofheight i plusthenumberoffreeedgesinE(T,V \T)ofheightstrictlysmallerthani. ThewidthofT,denotedw(T),isthe maximumi-widthinT,takenoveri 0,1,...,h(T). = Wearereadytoprovethefollowingproposition,whichimpliesTheorem2since T 1 h(T) w(T). | |≤ + · Proposition14. LetT beatreeoftypetinMAKER’sgraph.Then, d t, 1 t d 1; w(T) − ≤ ≤ − ≤(2d 2, t 0. − = 6 Proof. We prove this by induction on the number of rounds in the game. The proposition holds for trivial trees. AssumeMAKERmergestreesT1andT2oftypest1andt2,respectively,byclaimingtheedge(u,v),wherev istheroot ofT2.Then,themergedtreeT hastypet max(0,t1 t2 d 1)afterBREAKER’smove.Notethatnecessarilyt2 0. = + − + > TheverticesofT1maintaintheirheightinT;verticesthathadheightj inT2,nowhaveheighth(u) 1 j inT.For + + i h(u),wehavewi(T) wi(T1) w(T1);fori h(v),thenow-claimededge(u,v)nolongercountsforthei-width ≤ = ≤ > ofT,so wi(T) wi(T1) 1 wi h(u) 1(T2) w(T1) w(T2) 1. (1) = − + − − ≤ + − Ift1 0then,bytheinductionhypothesis,w(T1) d t1andw(T2) d t2,so > ≤ − ≤ − w(T) w(T1) w(T2) 1 d t1 d t2 1 d t. ≤ + − ≤ − + − − = − Ift1 0thent 0too;bytheinductionhypothesis, w(T1) 2d 2andw(T2) d t2 d 1. Fori h(u),as = = ≤ − ≤ − ≤ − ≤ before,wehavewi(T) w(T1) 2d 2;fori h(u),assumingweshowthatwi(T1) d,thesamecalculationasin(1) ≤ ≤ − > ≤ yieldswi(T) wi(T1) w(T2) 1 d (d 1) 1 2d 2. ≤ + − ≤ + − − = − Bythedefinitionofwi(T1),thereexistasetU T1ofverticesofheighti andasetA E(T,V \T)offreeedgesof ⊆ ⊆ heightlessthani suchthatwi(T1) U A.Foreveryvertexx U,pickaleafx′ T1reachable(inT1)fromx.The =| |+| | ∈ ∈ out-degreeofx′ inD ispositive,sopicksomeedgee x′,y E(D). Ify T1,noonewilleverclaime;otherwise, = ∈ ∈ e∈E(T,V \T)soMAKERhasnotyetclaimedit.ByClaim¡13,n¢eitherdidBREAKERsinceh(e)=h x′ ≥h(x)=i>h(u) and(u,v)∈E(T1,V \T1)wasfreebeforeMAKER’smove. Altogether,wehaveaset A′of A′ =|U¡ |¢freeedgescoming outofT ,disjointfrom Asinceedgeheightsin A areallatleasti. ByClaim8,T isincidenttoatmostd freeedges, 1 ′ 1 ¯ ¯ sowi(T1) A A′ A A′ d,establishingtheproposition. ¯ ¯ =| |+ = ∪ ≤ ¯ ¯ ¯ ¯ Remark. Inthep¯rev¯iou¯ssubse¯ction,usingthecounter-strategytothetreestrategy,BREAKER couldboundw(T)by ensuringthat,besidesasinglevertexofdegreed,thedegreesofallverticesinT wereatmosttwo. Withthestrategy presentedinthissubsection,BREAKERcannotlimitw(T)byboundingthenumberofforksinT,i.e.,thenumberof verticesofout-degreeatleast2. Indeed,alreadyford 3,thereexistsapositiveout-degreeorientationD ofacubic = graphGandastrategyforMAKERtobuildatreeT withΩ(h(T))forksina(1:1)gameonG. 4 Shortgraphorientations InthissectionwediscussandproveLemma3.Webeginbyintroducingthefollowingnotation: Definition. For a directedgraph D, wedenote byl(D) themaximal length ofa simple directedpath inD. For an undirectedgraphGandj {0,1},wedenotebyl (G)theminimumofl(D)overallorientationsDofGsuchthatevery j ∈ vertexhasout-degreeatleast j. The case j 0, that is, when we drop the positive out-degrees requirement, was considered by (at least) four = independentworks. Theorem15(Gallai[6]–Hasse[8]–Roy[17]–Vitaver[20]). ForeverygraphG,l0(G) χ(G). = Wemention hereonly the easyside oftheproof, whichwill beused shortly. Tosee thatl0(G) χ(G), colorG ≤ properlybythecolors 1,2,...,χ(G) andorienteachedge{u,v}fromutoviffu’scolorisgreaterthanv’s. Returningtotheca©se j 1,wecªannotexpectanorientationD withpositiveout-degreesforwhichl(D)isinde- = pendentofn.Indeed,wheneveryvertexhasapositiveout-degree,Dsurelycontainsadirectedcycle,sol1(G) g(G). ≥ Knownconstructionsofd-regulargraphsofhighgirth(see,e.g.,[3,5,14])yieldfamiliesofgraphsofordern,chromatic numberΩ d/logd andgirthΩ logd−1n .Thus,ourbesthopewouldbetoshowthatl1(G)=O logn . Thema¡inideao¢ftheproofth¡atfollow¢sisthis:wefindinGasetofdisjointshortcycles,which¡weo¢rientcyclically, andweorienttherestoftheedges“towards”thecycles.Lemma10willassistusinshowingthatsimpledirectedpaths outsidethecyclesarenecessarilyshort. ProofofLemma3. Fixk max 3, logδ/loglogδ andsetγ log n ,γ log n . LetC beamaximal c=ollectionofnonadjacentinduced cδy=clesofδ−le1ngth akt=mostk2−γ1 . Thatis, webeginwithan ¡ § ¨¢ § ¨ § k ¨ emptycollectionC ∅and,aslongasthereexistsaninducedcycleC inG oflength C 2γ whoseverticeshave k = | |≤ noneighborsamongVC,theverticesofcyclesinC,weaddC toC.NotethatC isnonemptysincethegirthofGisat most2γ 2γ ,byLemma10(ortheMoorebound). δ k ≤ FixanycyclicorientationofthecyclesinC,andorienttheedgesofE(VC,V \VC)intoC.AlledgesincidenttoC arethusoriented,asthecyclesinC areinducedandnonadjacent.SincenoedgesareleavinganycycleinC,oncewe orienttherestofthegraph,anysimpledirectedpathcancontainatmost2γk verticesofVC,whichformitssuffix. 7 WenowfusealltheverticesofcyclesinC toasinglevertex s. LetG V ,E betheresultinggraph; makeit ′ ′ ′ = simplebydiscardingloopsandparalleledgesincidenttos. ¡ ¢ Forevery vertex v V′ wedenoteitsdistancefrom s byρ(v). Weclaimthatρ(v) 1 γδ; indeed, v iswithin ∈ ≤ + distanceγ ofsomeshortcycleC byLemma10(specifically,v iswithindistanceγ ofanyvertexonC),andC either δ δ intersectssomecycleinC,isadjacenttosomecycleinC,orsimplyC C,bythemaximalityofC. ∈ Fori ∈ 1,2,...,1+γδ , considerthelevelsetVi′= v∈V′:ρ(v)=i andthesubgraphGi ⊂G′ itinduces. Asin theproofofTheorem15,weorientedgesbetweenV andV “downwards”(i.e.,fromV toV ). Thisensuresall © ª i′ © i′ 1 ª i′ 1 i′ verticesexceptshaveapositiveout-degree,viashortestpaths+tos. + By definition, every edge either lies inside a level set or connects two successive level sets. Therefore, it only remainstoorientedgesbetweensameheightvertices,whichwillbedoneusingTheorem15.ForG1wehavel0(G1) = χ(G1) χ(G)sinceG1 G.BythemaximalityofC,foralli 1,Gi hasnocycleoflengthatmost2γk.ApplyLemma10 ≤ ⊂ > todeducethatG cannothaveasubgraphwithminimumdegreek;inotherwords,G is(k 1)-degenerate,and,in i i − particular,k-colorable. Altogether,wehaveanorientationD ofG satisfying ′ ′ 1+γδ 1+γδ l D′ l0(Gi) χ(Gi) χ(G) kγδ; ≤ = ≤ + i 1 i 1 ¡ ¢ X= X= combinedwiththeorientationofedgesincidenttoC definedabove,wegetanorientationD ofGwithpositiveout- degreesandl(D) χ(G) kγ 2γ .Therefore, δ k ≤ + + l1(G) l(D) χ(G) O logn/loglogδ , ≤ = + ¡ ¢ asthelemmastates. 5 Concludingremarksandopenproblems Componentgamesonothergraphs. Forthesakeofsimplicity,wepresentedourresultsinthispaperonlyforregular graphs,butthesestayputunderthealternativedefinition sb∗(n,d)=max sb∗(G):Gisagraphonnverticesand∆(G)≤d . © ª Itwouldbeinterestingtoconsiderthecomponentgameonfamiliesofgraphsofunboundedmaximumdegree. For instance,theMaker–BreakercomponentgameonG isconsideredby[12]. n,p Doubly-biasedgames. AsshowninRemark7,Theorem4canbeeasilyextendedtothedoubly-biasedgame(m:b) forb/m (d 2);similarly,Remark9extendsProposition1tothe(m:b)gameforb/m (d 2).However,thestrategy < − > − presentedinSubsection3.3isinadequateinthe(m:(d 2)m)game.Indeed,alreadyform 2,thereexistsapositive − = out-degreeorientationDofad-regulargraphGandastrategyforMAKERtobuildaconnectedcomponentSofwidth Ω dh(S) ina(2:2d 4)gameonG.ThekeystepinMAKER’sstrategyistomergeconnectedcomponentsbyclaiming − twoout-edgesenteringthesamevertex,nullifyingClaims12and13,andthusProposition14nolongerholds. ¡ ¢ WebelievethatnotallhopeislostforBREAKER. Conjecture16. LetG bead-regulargraphonn vertices,whered 3, and letm beapositiveinteger. Then, inthe ≥ (m:(d 2)m)gameonG,BREAKERcanforceMAKERtobuildonlyconnectedcomponentsofsizeo(n),perhapspolylog- − arithmic(orevenlogarithmic)inn. Verylargedegrees. OurresultsinSubsection1.2holdforanyvalueofd,butyieldlittleford Ω(n). = ǫn fIrnompaPrtriocuploasri,tifoonrG5=(nKotne+1thaantdΨfoEr(Kenver1y,kǫ)>0n,we1gektsf(∗o1r+ǫe)nve(Kryn+11)≤k2/ǫnf/r2o)m; hPorwopevoesri,tifoonr1bandds(∗1n−ǫ)wne(Kgne+t1t)h≥e + = + − ≤ ≤ = = meaninglessbounds0≤sn∗(Kn)≤n.Aslightlybetterupperboundwouldbesn∗(Kn+1)≤1+⌈n/2⌉,justbecausea(1:b) gameonanygraphGlasts E(G) /(b 1) rounds. ⌈| | + ⌉ Itwouldbeinterestingtogetanontrivialboundonsn∗(Kn 1). + Verylargecomponents. RecalltheproofofTheorem4inSection2,whichcombinedthetreestrategywithedgeex- pansionviaProposition5.HowfarcanProposition5pushMAKER?CanMAKERuseittobuildaconnectedcomponent ofsize n/2 ? ThefollowingupperboundontheCheegerconstantofregulargraphs,duetoAlon[1],saysthatthisis ⌊ ⌋ onlypossiblewhenthebiasiswellbelowd/2. 8 Theorem17([1]). Foreveryd-regulargraphG,ΨE(G, n/2 ) d/2 Ω(pd). ⌊ ⌋ ≤ − Proposition5posesasufficient,butobviouslynotanecessary,conditionforthetreestrategytosucceed.Itmaybe possibleforMAKERtobuildaconnectedcomponentofsize n/2 viathetreestrategyorsomeotherstrategy,without ⌊ ⌋ relyingonexpansion. Shortorientations. TheproofofLemma3showsthatl1(G) χ(G) O logn/loglogd .Ontheotherhand,l1(G) ≤ + ≥ Ωg(Gd)/alongddl1((Gse)e≥,el.0g(.G,[)3=,5χ,1(G4]))adnedmthounsstcroatnesttrhuacttsioonmseotifmde-rselg1u(Gla)r≥grχap(Ghs)¡+ofΩgirlothgΩn/¡llooggdd¢−1.n¢andchromaticnumber ¡ Wesusp¢ectthecorrectbehaviorofl1(G)isactuallythelowerbound,asthe¡followingc¢onjecturestates. Conjecture18. LetGbead-regulargraphonnvertices,whered 3.Then,l1(G) χ(G) O logn/logd . ≥ = + Onecanalsoaskaboutthevalueofl (G)for j 1. ¡ ¢ j > Acknowledgements TheauthorswishtothankNogaAlon,AsafFerber,DannyHefetz,andMichaelKrivelevichforusefuldiscussionsand comments. References [1] NogaAlon,Ontheedge-expansionofgraphs.Combin.Probab.Comput.6:145–152(1997). [2] Noga Alon, Itai Benjamini, and Alan Stacey, Percolation on finite graphs and isoperimetric inequalities. Ann. Probab.32(3):1727–1745(2004). [3] BélaBollobás,Chromaticnumber,girthandmaximaldegree.DiscreteMath.24:311–314(1978). [4] VašekChvátalandPaulErdo˝s,Biasedpositionalgames.Ann.DiscreteMath.2:221–228(1978). [5] PaulErdo˝sandHorstSachs,Regulargraphswithgivengirthandminimalnumberofknots(inGerman).Wiss. Z.Martin-Luther-Univ.Halle-Wittenberg,Math.-Naturwiss12:251–257(1963). [6] TiborGallai,Ondirectedgraphsandcircuits.In:TheoryofGraphs,Proc.Colloq.Tihany1966,NewYorkAcademic Press,pp.115–118(1968). [7] HeidiGebauerandTiborSzabó,Asymptoticrandomgraphintuitionforthebiasedconnectivitygame.Random StructuresandAlgorithms35:431–443(2009). [8] Maria Hasse, Zur algebraischen Begründung der Graphentheorie. I (in German). Mathematische Nachrichten28(5–6):275–290(1965). [9] Dan Hefetz, Michael Krivelevich, Miloš Stojakovic´ and Tibor Szabó, Global Maker-Breaker games on sparse graphs.EuropeanJ.Combinatorics32:162–177(2011). [10] DanHefetz,MirjanaMikalacˇkiandMilošStojakovic´,DoublybiasedMaker-BreakerConnectivitygame.Electronic J.Combinatorics19:P61(2012). [11] Shlomo Hoory, Nathan Linial and Avi Wigderson, Expander graphs and their applications. Bull. Amer. Math. Soc.43:439–561(2006). [12] MichaelKrivelevichandTobiasMüller,privatecommunication. [13] AlfredLehman,AsolutionoftheShannonswitchinggame.J.Soc.Indust.Appl.Math.12:687–725(1964). [14] AlexanderLubotzky,R.PhillipsandPeterSarnak,Ramanujangraphs.Combinatorica8(3):261–277(1988). [15] Asaf Nachmias and Yuval Peres, Criticalpercolation on random regular graphs. Random Structuresand Algo- rithms36(2):111–148(2010). [16] CrispinSt.JohnAlvahNash–Williams,Edge-disjointspanningtreesoffinitegraphs.J.LondonMath.Soc.36:445– 450(1961). 9 [17] B.Roy,Nombrechromatiqueetpluslongscheminsd’ungraphe(inFrench).Rev.FrançaiseInformat.Recherche Opérationnelle1(5):129–132(1967). [18] Miloš Stojakovic´ and Tibor Szabó, Positional games on random graphs. Random Structures and Algo- rithms26:204–223(2005). [19] William Thomas Tutte, On the problem of decomposing a graph into n connected factors. J. London Math. Soc.36:221–230(1961). [20] L.M.Vitaver,DeterminationofminimalcoloringofverticesofagraphbymeansofBooleanpowersoftheinci- dencematrix(inRussian).Dokl.Akad.NaukSSSR147:758–759(1962). 10

See more

The list of books you might like