loading

Logout succeed

Logout succeed. See you again!

ebook img

Constraints on the braneworld from compact stars PDF

file size0.71 MB

Preview Constraints on the braneworld from compact stars

Eur.Phys.J.CmanuscriptNo. (willbeinsertedbytheeditor) Constraints on the braneworld from compact stars R.Gonza´lezFelipea,1,2,D.ManrezaParetb,3,A.Pe´rezMart´ınezc,4,5 1ISEL-InstitutoSuperiordeEngenhariadeLisboa,InstitutoPolite´cnicodeLisboa,RuaConselheiroEm´ıdioNavarro1959-007Lisboa,Portugal 2DepartamentodeF´ısicaandCentrodeF´ısicaTeo´ricadePart´ıculas-CFTP,InstitutoSuperiorTe´cnico,UniversidadedeLisboa,AvenidaRovisco Pais,1049-001Lisboa,Portugal 3DepartamentodeF´ısicaGeneral,FacultaddeF´ısica,UniversidaddelaHabana,LaHabana,10400,Cuba 4InstitutodeCiberne´tica,Matema´ticayF´ısica(ICIMAF),LaHabana,10400,Cuba 5InstitutodeCienciasNucleares,UniversidadNacionalAuto´nomadeMe´xico,ApartadoPostal70-543,DistritoFederal04510,Mexico 6 1 Received:date/Accepted:date 0 2 y Abstract Accordingtothebraneworldidea,ordinarymat- In the Randall-Sundrum type-II brane model, the bulk a terisconfinedona3-dimensionalspace(brane)thatisem- geometry is curved and the brane is endowed with a ten- M bedded in a higher-dimensional space-time where gravity sion that is fine-tuned against the bulk cosmological con- 6 propagates. In this work, after reviewing the limits com- stant to ensure a flat Minkowski space-time in the brane. 1 ingfromgeneralrelativity,finitenessofpressureandcausal- Thebranetensionλ relatesthePlanckmasses,M andM , P 5 ityonthebrane,wederiveobservationalconstraintsonthe in four and five dimensions, respectively, via the equation ] c braneworldparametersfromtheexistenceofstablecompact λ =3M56/(4πMP2),whereMP=1.22×1019 GeV.Success- q stars.Theanalysisiscarriedoutbysolvingnumericallythe fulbigbangnucleosynthesisrequiresthatthechangeinthe - r brane-modifiedTolman-Oppenheimer-Volkoffequations,us- expansionrateduetothenewtermsintheFriedmannequa- g ing different representative equations of state to describe tionbesufficientlysmallatscales∼O(MeV).Amorestrin- [ matter in the star interior. The cases of normal dense mat- gentboundcanbeobtainedbyrequiringthetheorytoreduce 2 ter,purequarkmatterandhybridmatterareconsidered. toNewtoniangravityonscaleslargerthan1mm[4]. v ModificationstoEinsteingravityarealsorelevantinthe 3 vicinityofmassivecompactobjectsasblackholesandneu- 7 9 tron(quark,hybrid)stars.Compactstarsarethereforeaspe- 1 Introduction 1 cial laboratory to look for possible modifications of gen- 0 eral relativity (GR) and to test extra dimensions [9]. From . Braneworld ideas and, in particular, the Randall-Sundrum 1 theexistenceandstabilityofsuchastrophysicalobjects,one 0 (RS) models [1, 2] have been extensively investigated dur- expectsadditionalconstraintsontheparametersofalterna- 6 ingthelastdecade,mainlymotivatedbythedevelopmentof tive theories of gravity [10–17]. In particular, it has been 1 stringtheory.Aremarkablefeatureofthebraneworldisthat : shown that neutron stars (NS) put a lower bound on the v it modifies the Einstein equations locally and non-locally, brane tension λ, which is stronger than the bound coming i leadingtoaneffectiveenergy-momentumtensor.Thesemod- X from big bang nucleosynthesis, although weaker than the ifications have important consequences for cosmology [3], r experimentalNewtonlawlimit[10].Furthermore,thewell- a sincesignificantdeviationsfromEinsteingravitycouldhave knowncompactnesslimitGM/R≤4/9[18],obtainedinGR occurredatveryhighenergiesintheearlyuniverse.Inpar- byrequiringthefinitenessofpressureatthecentreofauni- ticular, in brane cosmology, the expansion rate of the uni- formstar,isreducedbyhigh-energy5Dgravityeffects. verseH scaleswiththeenergydensityρ asH∝ρ,whereas The macroscopic properties of compact stars also cru- this dependence is H ∝ρ1/2 in standard cosmology. This cially depend on the constituent matter in the star interior. high-energy behaviour, which is generic and not specific Moreprecisely,starmassesandradiiaredeterminedbythe toRSbraneworldscenarios,mayaffectearlyuniversephe- equationofstate(EoS)ofmatter,i.e.bytherelationp(ρ)be- nomena,suchasinflation[4]andthegenerationofthecos- tweenthepressureandtheenergydensityinsidethestar.In mologicalbaryonasymmetry[5–8]. theabsenceofauniqueframeworktodescribethephysicsof ae-mail:[email protected] compactstars,severalapproachescanbeadoptedforthede- be-mail:dmanreza@fisica.uh.cu terminationoftheEoS.Forinstance,itcanbereconstructed ce-mail:[email protected] frommass-radiusmeasurements[19–21].Alternatively,one 2 can resort to theoretical calculations based on chiral effec- i.e., stars with a hadronic outer region surrounding a quark tivefieldtheoriesandobtainstringentconstraintsfortheNS (ormixedhadron-quark)innercore. radii[22],whencombinedwithmassmeasurements. The study of the macroscopic stellar properties is car- ried out through the solution of the Tolman–Oppenheimer- Inouranalysis,thenon-local“dark”components[3,13] Volkoff(TOV)equations,properlymodifiedtoincludelocal arisingfromthebulkWeyltensoraremodelledviathesim- ple linear proportionality relation P = wU between the andnon-localbulkeffects.Thelocalandnon-localbulkcor- darkenergyU anddarkpressureP.Suchafunctionalform rections to the energy-momentum tensor turn out to play a crucialroleinthestabilityofcompactstarsonthebraneand follows,forinstance,fromtherequirementthatthevacuum inestablishingagreementwiththeobservationalconstraints. on the brane admits a one-parameter group of conformal The present work extends previous studies (e.g. [14]) not motions and the field equations are invariant with respect onlybyincludingintheanalysisthecompactnessandcausal- to the Lie group of homologous transformations [23]. The itylimitsinthebraneworld,butalsobyconsideringthefull aboverelationhasalsobeenusedin[11]tostudythejunc- parameterspaceforthebranetensionλ andthewcoefficient tionconditionsbetweentheinteriorandexteriorofstaticand oftheassumeddarkEoS. spherically symmetric stars on the brane. Recently, it has Thepaperisorganisedasfollows.InSect.2wepresent been employed in the study of the mass-radius relation of and briefly discuss the TOV equations on the brane. The somehadronicstars,hybridstars(HS)andquarkstars(QS) brane-modifiedcompactnesslimitsaresummarisedinSect.3 in the braneworld [14]. In a different context, this type of and a new causality limit is derived requiring the sublu- state-likerelationiscommonlyassumedincosmologytode- minality of the EoS for matter inside the compact star. In scribethemattercontentoftheuniverseatdifferentepochs Sect.4,wepresentthebraneTOVsolutionsforseveralrep- (w=1/3forradiationdomination,w=0foramatterdom- resentativeEoS.Thepredictedmass-radiusrelationsarethen inateduniverse,andw=−1foracosmologicalconstant). comparedwiththeobservationalconstraints.Finally,ourcon- It is pertinent to stress the limitations of our approach. cludingremarksaregiveninSect.5. We admittedly consider a linear relation between the dark energyU anddarkpressureP thatappearintheeffective 4Dequations.Thesequantitiescomefromthe5DWeylten- 2 TOVequationsonthebrane sor, which cannot be determined solely from the 4D equa- tions.TheparticularchoiceP =wU isthereforearestric- Thefieldequationsinducedonthebranehavetheform[3] tion.Thealternativewaystoproceedwouldbeeithertocon- sider an infinite number of functional dependences P(U) G =R −1Rg =κ2T +6κ2S −E , (1) µν µν µν µν µν µν 2 λ or,moreappropriately,toremovetheambiguitybysolving thefull5DEinsteinequations.Thelatterhasprovenavery whereG istheusualEinsteintensor,κ2=8πG,andT µν µν demandingtasksofar. isthestandardenergy-momentumtensor.1 Foraspherically The purpose of the present work is two-fold. First we symmetricstar,themetricinstaticcoordinatesisgivenby study the limits coming from general relativity, finiteness ds2=−e2Φ(r)dt2+e2Λ(r)dr2+r2(dθ2+sin2θdφ2). (2) ofpressureandcausality,appliedtocompactobjectsinthe braneworld. In particular, assuming a star interior with a The tensors S and E encode the local and non-local µν µν vanishing dark pressure and a non-vanishing dark density, bulkcorrections,respectively.Foraperfectfluid,theexpres- andconsideringapurecausalEoS,weshallderiveabrane- sionsforT andS aregivenby[3] µν µν modified causality limit that depends on the brane tension, andwhichismorerestrictiveasλ decreases.Secondly,we Tµν =ρuµuν+p(gµν+uµuν) (3) studycompactstarsintheRStype-IIbraneworldinorderto and establishlimitsontheparametersofthemodel. 1 1 Ouranalysisisbasedonastrophysicalobservationsand S = ρ2u u + ρ(ρ+2p)(g +u u ), (4) µν µ ν µν µ ν 12 12 weuserepresentativeEoStodescribematterinthestarin- terior.Inparticular,fordensenuclearmatter,weshallcon- where uµ is the four-velocity of the fluid. The tensor E µν sidertheanalyticalrepresentationgivenin[24]fortheuni- reducestotheform fiedBrussels-MontrealEoSmodels,whicharebasedonthe nuclear energy-density functional theory with generalized Eµν =−κ62λ (cid:2)Uuµuν+Prµrν Skyrmeeffectiveforces.Forquarkmatter,weshallemploy (cid:21) (5) 1 thesimplephenomenologicalparametrisationgivenin[25], + (U −P)(gµν+uµuν) , 3 which includes QCD and strange quark mass corrections. We shall also consider a hybrid EoS to study hybrid stars, 1Hereafter,weuseasystemofnaturalunitswithc=1. 3 for the case of a static spherical symmetry. Here, r is a TointegratetheTOVequations,weneedappropriateini- µ unit radial vector, U is the non-local energy density (dark tialconditionsatthecentreofthestar.Asingeneralrelativ- radiation) and P is the non-local pressure (dark pressure) ity,weassumethattheenclosedmassiszeroatthecentre, onthebrane.FromEqs.(1)and(5),weseethatstandard4D m(0)=0,andthat p(0)= p ,where p isthecentralpres- c c generalrelativityisrecoveredinthelimitλ →∞. sure.Atthestellarsurface,werequire p(R)=0,i.e.avan- Solving Einstein’s equations for a perfect fluid matter, ishingpressure,whichcorrespondstoastarmassm(R)=M. the following modified TOV equations are obtained on the AsforthedarkcomponentU,weshallassumethatU(0)= brane: 0.Weremarkthatdifferentinitialconditionsforthedarken- dm ergy density U can be chosen. They could be given either =4πr2ρ , (6) dr eff atthecentreofthestaroratitssurface.Inthelattercase,a dp dΦ shootingmethodisrequiredfortheintegrationofthesystem =−(ρ+p) , (7) dr dr ofequations[17].Theboundaryconditionchosenhere,i.e. dΦ 2Gm+κ2r3(cid:2)peff+(4P)/(κ4λ)(cid:3) avanishingdarkdensityatthecentre,isthesimplestchoice. = , (8) Notealsothatifw=−1/2,thevalueofU atthecentreis dr 2r(r−2Gm) obtaineddirectlyfromEq.(16). dU 1 dρ dP 6 =− κ4(ρ+p) −2 − P The system (12)-(15) must be supplemented with the dr 2 dr dr r Israel-Darmoisjunctionconditions[26,27]atthestellarsur- dΦ −(2P+4U) , (9) face.Onthebrane,thisleadstothematchingcondition dr (cid:20) (cid:21) where 4 p + P =0, (18) ρ =ρ + 6 U , p =p + 2 U . (10) eff κ4λ surf eff loc κ4λ eff loc κ4λ where[f] ≡ f(R+)−f(R−),andthesuperscripts+and surf Intheaboveexpressions, −refertoquantitiesdefinedoutsideandinsidethestar,re- spectively.Therequirementp(R)=0atthesurfacethenim- ρ2 pρ ρ2 ρ =ρ+ , p =p+ + , (11) plies loc loc 2λ λ 2λ κ4 denote the effective local matter density and pressure, re- ρ2(R)+U−(R)+2P−(R)=U+(R)+2P+(R). (19) 4 spectively.Inordertosolvethesystemofdifferentialequa- tions(6)-(9),anequationofstate p(ρ)formatterandare- IntheabsenceofanyWeylstressintheinterior,wehave lation P(U) are required. As explained before, we shall P−=U−=0andEq.(19)impliesthattheexteriormust assumethesimpleststate-likerelationP =wU.Withthis be non-Schwarzschild, provided that the energy density ρ choice,Eqs.(6)-(9)become does not vanish at the surface. The same conclusion holds dm ifw=−1/2,sinceinthiscaseU−(R)+2P−(R)=0.On dr =4πr2ρeff, (12) theotherhand,ifρ(R)(cid:54)=0andtheexteriorisSchwarzschild dp dΦ (P+=U+=0),thennecessarilyU−(R)+2P−(R)(cid:54)=0 =−(ρ+p) , (13) in the star interior. Note that the condition P =U =0 is dr dr dΦ 2Gm+κ2r3(cid:2)peff+(4wU)/(κ4λ)(cid:3) the condition for a perfect fluid without non-local or Weyl = , (14) corrections. While for the exterior this corresponds to the dr 2r(r−2Gm) Schwarzschild solution, this is not the case for the star in- dU 2 (cid:20)κ4 dρ 3w =− (ρ+p) + U terior, where local high-energy corrections are present. A dr 1+2w 4 dr r consistent version of the Schwarzschild interior metric in (cid:21) dΦ thecontextofthebraneworld,includinglocalandnon-local +(w+2)U , (15) dr bulkterms,hasbeenfoundin[28].Regardingthematching conditions,ithasbeenshownthattheexteriorSchwarzschild wherethelastequationholdsforw(cid:54)=−1/2.Thecasew= −1/2shouldbetreatedseparately.SolvingforU inEq.(9) solutioniscompatiblewithastellardistributionmadeofreg- ularmatter[29]. andusing(8),weobtainforw=−1/2, WealsonotethattheTOVequationsinthebraneworld κ4(ρ+p)2 2Gm+κ2r3p admit asymptotically flat exterior solutions different from U(r)= loc , (16) 6v2 2(3Gm−r)+κ2r3p theSchwarzschildsolution.Inwhatfollows,ouranalysisis s loc restricted to solutions in the star interior with generic dark wherev isthespeedofsound, s energy and dark pressure components obeying the EoS re- dp lationP=wU.Possibleexteriorsolutionsarenotconsid- v2= . (17) s dρ eredinthiswork. 4 compactstarinthebraneworld,whencomparedtothegen- 3 eralrelativitycase. Anotherimportantlimitcomesfromrequiringthepres- 2.5 sureinsidethecompactobjecttobefinite.Sincethepressure decreaseswiththeradiusr,thisconditionisequivalenttothe 2 requirementofapositiveandfinitepressureatthecentreof thestar.Thisgivestheconstraint[10] (cid:2) M M/1.5 Schwarzschildlimit GM 4 1+7ρ/4λ+5ρ2/8λ2 p<∞(GR) R ≤ 9 (1+ρ/λ)2(1+ρ/2λ). (23) 1 λ=102 SolvingforMtofindthemaximummass,weobtain λ=103 √ 0.5 λ=104 M(R)= 4 πR2(cid:2)−2√πGλR 9G 00 5 10 15 20 25 +(cid:113)Gλ(5+4πGλR2)cos(cid:18)1tan−1x(cid:19)(cid:21), (24) R[km] 3 Fig.1 Generalrelativityandpressurefinitenesslimitsonthebrane, where ainssuunmitisnogfaMsteaVri/nfmte3ri.orwithP=U =0.Thebranetensionλisgiven (cid:0)125G−1λ−1+264πR2+144π2GλR4(cid:1)1/2 x= √ . (25) 2 πR(3+4πGλR2) 3 Compactnesslimitsinthebraneworld Inthelimitλ →∞,werecoverthepressurefinitenesslimit ofGR, In this section, we revisit the compactness limits on a uni- 4R formstarcomingfromgeneralrelativityandtherequirement M(R)= . (26) 9G of the finiteness of pressure. We shall also derive a brane- ThecurvedefinedbyEq.(24)ispresentedinFig.1for modifiedcausalitylimitfortheexistenceofstablestars. AssumingauniformdensityandP=U =0,thehigh- different values of the brane tension (dot-dashed lines). As inthecaseoftheSchwarzschildlimit,high-energybraneworld energy brane corrections are local. In this case, an astro- corrections are significant for λ (cid:46)104 MeV/fm3. We also physical lower limit on λ, independent of the Newton-law note that for a given radius R the maximum mass allowed and cosmological limits, can be established for all uniform bythebound(24)islowerthanthatcomingfrom thelimit stars[10]: inEq.(21). GMρ A third relevant constraint on the maximum star mass λ ≥ , (20) R−2GM comesfromcausality,i.e.fromrequiringthesubluminality oftheEoS,2i.e.v2≤1.Theboundobtainedfromthiscondi- withρ =3M/(4πR3).Forapositivebranetension,thisim- s tioniscontrolledbythestiffnessofthematterEoS,andsev- plies R>2GM, so that the Schwarzschild radius remains eral limits have been derived in the literature [31–33] (see alimitingradius.Belowtheastrophysicallimit(20),stable also[19]forareview).Inparticular,astringentcausallimit neutronstarscannotexistonthebrane.Thisboundismuch hasbeenobtainedin[33],basedonthe“minimumperiod” stronger than the cosmological nucleosynthesis constraint, EoS butturnsouttobeweakerthantheNewton-lawlowerbound. (cid:26) From Eq. (20), we find the following upper bound for the p= 0, ρ <ρs, (27) mass: ρ−ρs, ρ ≥ρs, 2R2(cid:18)(cid:113) (cid:19) whereρsisthesurfaceenergydensity.ThisEoScorresponds M(R)= πλ(3G−1+4πλR2)−2πλR . (21) tomaximalstiffnessathighdensitiesandminimalstiffness 3 at low densities, thus supporting the largest mass with the Asexpected,inthelimitλ→∞,werecovertheSchwarzschild smallestradius.Ingeneralrelativity,suchEoSalsoimplies limitofGR: that the maximum value of the mass scales with the radius asM∝R.ThenumericalintegrationoftheTOVequations 1R M(R)= . (22) forvariousinitialvaluesofthecentralpressurep thenleads 2G c totheGRrelation[33] The astrophysical bound given by Eq. (21) is illustrated in Fig.1fordifferentvaluesofλ (solidlines).Ascanbeseen R(cid:39)2.82GM. (28) from the figure, brane corrections to the compactness limit 2Forsomecaveatsonthespeedofsoundandtherequirementofcausal- wouldbesignificantforλ (cid:46)104MeV/fm3,leadingtoaless ityseee.g.[30]. 5 Asweshallshownext,thiscompactnesslimitismodifiedin 4 thebraneworld. causality(GR),vs≤1 Firstwenoticethat,fromEqs.(10)and(11),andusing 3.5 λ=102,w=0 theconservationequationsforρ andU,aneffectivespeed λ=103 λ=104 ofsound[3]isobtainedas 3 dp v2(1+ρ/λ)+(ρ+p)/λ+v2 2.5 v2 ≡ eff = s U , (29) (cid:2) s,eff dρeff 1+ρ/λ+3v2U M/M 2 where 1.5 8 U 1 v2 = . (30) U 3κ4λ ρ+p 0.5 As expected, in the limit λ →∞, we have v =v . Note s,eff s 0 alsothatv2 isnotnecessarilyapositivenumber,sincethe 0 2 4 6 8 10 12 14 16 18 20 U R[km] Weyl energy density can be negative. Moreover, when the radiation term vU dominates over the matter components, 4 √ vo2sn,eeffh(cid:39)asvv2s2s+,effp(cid:39)/ρ1+/31..Ontheotherhand,ifv2U (cid:28)ρ/λ then 3.5 cλλa==usa11l00i23ty,w(G=R0),vs≤1/ 3 LetusconsiderthecaseofaSchwarzschildexteriorand 3 λ=104 a star interior with P =0 (i.e. w=0) and U (cid:54)=0. In this 2.5 case,theboundarycondition(19)yieldsanegativedarkra- diationdensityatthestarsurface.WeobtainU =−κ4ρs2/4, /M(cid:2) 2 so that v2 =−2ρ /(3λ) at the surface. From Eq. (29) we M U s 1.5 thenfind v2(1+ρ /λ)+ρ /(3λ) 1 v2 = s s s . (31) s,eff 1−ρs/λ 0.5 Requiringvs,eff≤1,theconstraint 0 0 2 4 6 8 10 12 14 16 18 20 R[km] (4/3+v2)ρ λ > s s, (32) 1−v2 Fig.2 Causalityconstraintonthebrane,obtainedfromthecausalEoS s ofEq.(27)(topplot)andEq.(33)(bottomplot).Astarinteriorwith withv2<1,isobtained. P=0(i.e.w=0)andU (cid:54)=0isassumed.Thebranetensionλisgiven s inunitsofMeV/fm3. Next we illustrate how the corrections due to brane ef- fectsleadtomodificationsoftheGRcompactnesslimitgiven in Eq. (28). Solving numerically the system of equations Table1 Causality√limitinthebraneworldfortwocausalEoS(with (12)-(15),fromthestarcentreuntilthesurface,wecande- vs≤1andvs≤1/ 3),assumingavanishingdarkradiationpressure (P=0)andanon-zerodarkenergydensityU inthestarinterior.The terminethemaximumstarmass.Theresultsarepresentedin minimumradiusisapproximatelydescribedbyastraightlinewitha Fig. 2 (upper plot) for different values of the brane tension slopethatvarieswiththebranetension. λ and taking w=0. Deviations from the causality limit in √ GR (black solid line) occur for λ (cid:46)104 MeV/fm3, as can vs≤1 vs≤1/ 3 λ [MeV/fm3] R/(GM) R/(GM) beseenfromthecurvesformaximalmassesdepictedinthe 10 3.77 4.96 figure. In this case, for the star radii range of interest, the 102 3.45 4.64 maximummass(minimalradius)canbewellapproximated 103 3.06 4.13 byastraightline,M(cid:39)αR/G,withaslopeα thatincreases 104 2.83 3.73 ∞(GR) 2.82 3.68 asthebranetensionλ increases,reachingtheGRlimit(28) whenλ →∞.Thevaluesofα−1arepresentedinthesecond columnofTable1fordifferentvaluesofλ. Ithasbeenrecentlyconjecturedthatthespeedofsound coupled theories, and is respected by several strongly cou- √ shouldsatisfytheboundv ≤1/ 3inanymedium[34].It pled theories. If such a bound actually holds for the speed s iswellknownthatthisboundissaturatedinconformaltheo- of sound, it would modify the causality limit for compact ries,includingnon-interactingmasslessgasesforwhichp= astrophysical objects. In particular, it has been pointed out ρ/3. The limit also applies to non-relativistic and weakly thattheexistenceofneutronstarswithM∼2M ,combined (cid:12) 6 with the knowledge of the EoS of hadronic matter at low relation predicts a maximum mass M . While typically max densities,isinstrongtensionwiththisbound[34]. M (cid:46)2M for hybrid and strange quark EoS, maximum √ max (cid:12) Toillustratetheimplicationsoftheboundv ≤1/ 3for massesupto2.5M canbereachedwithnormalmatterEoS. s (cid:12) the stability of compact stars, let us consider the minimal From the astrophysical viewpoint, an important aspect causalEoS inthestudyofstellarconfigurationsistheirstability.Anec- (cid:26) essary condition for the stability of a compact star is given 0, ρ <ρ p= s (33) bytheso-calledstaticcriterion (ρ−ρ )/3, ρ ≥ρ , s s dM whichsaturatesthebound.3Thenumericalintegrationofthe >0. (35) dρ c TOVequationsofGRimpliesthecausalityrelation In other words, a compact star is stable if its mass M in- R(cid:39)3.68GM, (34) creaseswithgrowingcentraldensityρ =ρ(p ).Although c c thestabilityanalysisisusuallyquiteinvolved,somesimple whichismorerestrictivethatthebound(28).Theinclusion criteriacanbeformulatedbasedonthemass-radiusconfig- ofbranecorrectionsleadstomodificationstothislimit.For the case of a star interior with P =0 and U (cid:54)=0, the re- urationsandtheirstabilitywithrespecttoradialoscillations (see e.g. [35] and references therein). At each extremum sults are shown in Fig. 2 (lower plot). Once again, signifi- (critical point) of the M(R) curve, it is assumed that only cantdeviationsfromthecausalitylimitofGRtakeplacefor λ (cid:46)104 MeV/fm3. As before, the minimum radius is well oneradialmodechangesitsstabilityfromstabletounstable or, vice versa, from unstable to stable. Furthermore, at any approximatedbyastraightlinewhoseslopevarieswiththe criticalpoint,amodebecomesunstable(stable)ifandonly branetension.TheresultsaregiveninthelastcolumnofTa- if the curve bends counterclockwise (clockwise). Finally, a ble1.Wenotethat,foranygivenvalueofλ,theconstraint √ mode with an even (odd) number of radial nodes is said to obtainedfromrequiringv ≤1/ 3isalwaysstrongerthan s changeitsstabilityifandonlyifdR/dρ >0(dR/dρ <0) theonepreviouslyfoundundertheassumptionv ≤1. c c s atthecriticalpoint.Usingtheabovecriteria,thestabilityof agivenstellarconfigurationcanbeeasilychecked. 4 BraneTOVsolutionsandobservationalconstraints InordertoconfrontdifferentEoSwithcurrentmassand radius measurements, we shall use the following observa- Duetotheuncertaintiesinthedescriptionofthemany-body tionalconstraints.ForNSradii,weadopttherange interactionsandthenuclearsymmetryenergy,aswellasour lack of knowledge of the precise nature of strong interac- 7.6km≤R≤13.9km, (36) tions,theEoSofdensematterabovethenuclearsaturation where the lower bound follows from the measurement of density (ρ =2.7×1014g/cm3 (cid:39)150 MeV/fm3) is largely 0 theNSradiususingthethermalspectrafromquiescentlow- unknown.Dependingonthemattercompositionintheneu- massX-raybinariesinsideglobularclusters[36]andtheup- tronstarinterior,threemaintypesofequationsofstatehave per limit is taken from the analysis of [22], based on the beencommonlyused,namely,EoSfornormaldensematter, chiraleffectivetheory.Forthestarmasses,weconsiderthe purequarkmatterorhybridmatter. limits Inthecaseofnormaldensematter,neutronstarsaresup- portedagainstgravitationalcollapsebyneutrondegeneracy. 1.08M ≤M≤2.05M , (37) (cid:12) (cid:12) The EoS takes into account nucleon-nucleon interactions and is characterised by a vanishing pressure at null densi- where the conservative lower bound comes from the ex- ties. For hybrid stars, the EoS is usually softened at high pected range for the gravitational NS birth masses [37, 38] densitiesbyaddinghadronicorpurequarkmatteratthein- andthemaximumvalueisobtainedfromrecentradio-timing ner core of the star, which leads to a phase transition at a observationsofthepulsarPSRJ0348+0432[39]. givencriticaldensity.NormalandhybridEoSdonotleadto In the braneworld, the macroscopic properties of stable stringentboundsforthestarradii,whichinprinciplecanbe stellar configurations are controlled not only by the matter large (∼100 km). On the other hand, pure quark stars are EoSbutalsobyhigh-energybraneeffects,characterisedin conjectured to be mainly composed of strange quark mat- our setup by the brane tension and the assumed dark EoS. ter(SQM)inthegroundstate,withavanishingpressureat Next we analyse the implications of these effects on the non-zerodensities.Forsuchstarsthemaximumradiusisnot mass-radius relations of stable compact stars for the three solarge(∼10km).InallthreeEoScases,themass-radius classes of EoS mentioned above. In our analysis, we shall take into account the stability criteria as well as the physi- 3Note that the simple EoS of the well-known MIT bag model (with callyplausibleconditionofcausalityv ≤1,basedonthe masslessquarksandnostrongcouplingconstant)hasalsothisform.In s,eff thiscase,theparameterρsisassociatedtothebagconstant,ρs≡4B. effectivespeedofsounddefinedinEq.(29). 7 Table2 ParametersaiusedinEq.(38)fortheEoSBSk19,BSk20and BSk21[24]. 3 observationalrange BSk19 BSk20 BSk21 PSRJ0348+0432 2.5 NSBSk21(GR) a 3.916 4.078 4.857 λ=5×102,w=0 1 λ=103 a2 7.701 7.587 6.981 2 λ=5×103 a3 0.00858 0.00839 0.00706 λ=104 a4 0.22114 0.21695 0.19351 M(cid:2) λ=5×104 a5 3.269 3.614 4.085 M/1.5 a 11.964 11.942 12.065 6 a 13.349 13.751 10.521 7 1 a 1.3683 1.3373 1.5905 8 a 3.254 3.606 4.104 9 a −12.953 −22.996 −28.726 0.5 10 a 0.9237 1.6229 2.0845 11 a 6.20 4.88 4.89 12 0 a13 14.383 14.274 14.302 0 2 4 6 8 10 12 14 16 18 20 a 16.693 23.560 22.881 R[km] 14 a −1.0514 −1.5564 −1.7690 15 a16 2.486 2.095 0.989 3 a17 15.362 15.294 15.313 NSBSk21(GR) a 0.085 0.084 0.091 λ=5×102,w=0 a18 6.23 6.36 4.68 2.5 λ=103 19 λ=5×103 a20 11.68 11.67 11.65 λ=104 a21 −0.029 −0.042 −0.086 2 λ=5×104 a 20.1 14.8 10.0 22 a23 14.19 14.18 14.15 M(cid:2) /1.5 M 1 4.1 Neutronstars Letusfirststudytheexampleofaneutronstar.Todescribe 0.5 thecrustandthecoreofthestar,weshalluseananalytical representationoftheBrussels-MontrealunifiedEoSforcold 0 1 2 3 4 5 6 7 8 9 nuclear matter, referred to as models BSk19, BSk20, and ρc/ρ0 BSk21[40–42].Weconsiderthefollowingparametrisation Fig. 3 Top plot: Mass-radius relation for the NS BSk21 EoS. The of p(ρ)[24] curves are given for different values of the brane tension λ (in MeV/fm3), assuming a vanishing dark pressure in the star interior a +a ξ+a ξ3 ζ = 1 2 3 {exp[a (ξ−a )]+1}−1 (w=0)Bottomplot:Themassofthestarversusthecentralenergy 1+a4ξ 5 6 densityρc(inunitsofthenuclearsaturationdensityρ0). +(a +a ξ){exp[a (a −ξ)]+1}−1 7 8 9 6 +(a +a ξ){exp[a (a −ξ)]+1}−1 (38) straints of Eqs. (36) and (37), where the dark grey band is 10 11 12 13 +(a +a ξ){exp[a (a −ξ)]+1}−1 the mass range of the pulsar PSR J0348+0432 [39]. In the 14 15 16 17 plots,thesmallcirclesdenotethemaximummassM (in a a max + 18 + 21 , unitsofthesolarmassM )obtainedbyimposingthestabil- 1+[a (ξ−a )]2 1+[a (ξ−a )]2 (cid:12) 19 20 22 23 ity criterion alone, while the diamond markers indicate the where ξ =log (ρ/g.cm−3) and ζ =log (p/dyn.cm−2). maximumstarmassatwhichtheEoSsubluminalitybound 10 10 The parameters a (i=1,...,23) for the three models are v ≤1isviolated.Asλ increases,thisboundapproaches i s,eff giveninTable2.Inwhatfollows,werestrictouranalysisto the usual GR causality constraint vs ≤1, so that for larger themodelBSk21. values of λ the stability condition is more restrictive than WeproceedtosolvethesystemofbraneTOVequations thecausalitybound. for different initial values of the central pressure p in or- As can be seen from the top panel of Fig. 3, the max- c der to determine the mass-radius relation for such neutron imum mass and the corresponding star radius decrease as stars. We consider first the case of a dark EoS with w=0. λ decreases,sothatrequiringagreementwithobservational TheresultsarepresentedinFigs.3and4,wherethestable constraints leads to a lower bound on the brane tension, mass-radius configurations, i.e. those that verify the stabil- λ (cid:38) 8×102 MeV/fm3. The star radii lie in the range 8– itycriteriaandobeythecausalitylimitv ≤1,aregiven. 13 km. Furthermore, from the bottom panel of Fig. 4, we s,eff Theshadedgreyareascorrespondtotheobservationalcon- concludethatρ (cid:46)9ρ .Wealsonoticethatthemass-radius c 0 8 3 3 observationalrange PSRJ0348+0432 2.5 NSBSk21(GR) 2.5 λ=6×103,w=0 w=1 2 w=−1 2 w=−0.6 (cid:2) w=−0.51 M(cid:2) M/M1.5 /max1.5 M 1 1 NSBSk21,w=0 w=5 0.5 0.5 w=−1 w=−0.7 w=−0.5 0 0 0 2 4 6 8 10 12 14 16 18 20 103 104 105 106 R[km] λ[MeV/fm3] 3 3 2.5 2.5 2 2 (cid:2) (cid:2) M M/M1.5 /max1.5 M NSBSk21(GR) 1 λ=6×103,w=0 1 w=1 NSBSk21,λ=5×102 w=−1 λ=103 0.5 w=−0.6 0.5 λ=5×103 w=−0.51 λ=104 λ=5×104 0 0 1 2 3 4 5 6 7 8 9 10 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 ρc/ρ0 w Fig. 4 Top plot: Mass-radius relation for the NS BSk21 EoS. The Fig.5 Topplot:Maximumneutronstarmassasafunctionofthebrane curvesaregivenfordifferentvaluesofthedarkEoSparameterwand tensionfordifferentvaluesofthedarkEoSparameterw.Bottomplot: λ =6×103 MeV/fm3.Bottomplot:Themassofthestarversusthe Maximum star mass as a function of the dark EoS parameter w for centralenergydensityρc(inunitsofρ0). differentvaluesofthebranetension. 4.2 Quarkstars curves bend clockwise for some negative values of w (see e.g.thecurvesw=−0.6andw=−0.51inthetoppanelof It has been conjectured that strange quark matter could be Fig.4).Inthesecases,themaximumstarmassisrestricted the true ground state of strongly interacting matter at zero by the speed-of-sound condition v ≤1, since the stabil- s,eff pressure and temperature [43]. If this possibility actually ityconditionisviolatedatmuchhighervaluesofM andR. exists,itwouldopenthewindowfortheexistenceofcom- Forcomparison,wehavealsoindicatedwithcrosses(×)the pact stellar objects totally composed of SQM [44]. To de- mass-radiusconfigurationatwhichtheGRcausalitycondi- scribetheEoSinsidesuchstars,weconsiderthesimplephe- tionv ≤1isviolatedinsuchcases. s nomenologicalparametrisationgiveninRef.[25].Itconsists InFig.5,themaximumstarmassisgivenasafunction ofapowerseriesexpansioninthequarkchemicalpotential ofthebranetension(toppanel)andthedarkEoSparameter µ, w(bottompanel).Fromthefigureweconcludethatthemax- imumstarmasspredictedforthistypeofEoSiscompatible ρ = 9 a µ4− 3 a µ2+B, withobservationsprovidedthatλ (cid:38)6×102 MeV/fm3.For 4π2 4 4π2 2 (39) w(cid:38)−0.1, the value of Mmax remains practically constant p= 3 a µ4− 3 a µ2−B. with the variation of w, depending only on the value of λ. 4π2 4 4π2 2 Asimilarbehaviourisobservedforw(cid:46)−0.5.However,for Besides the bag parameter B, this parametrisation con- −0.3<w<−0.1, the maximum mass is quite sensitive to tainstwoadditionalparameters,a anda ,whichareinde- 4 2 w,asitbecomesevidentinthebottompanelofFig.5. pendentof µ andarerelatedtotheQCDandstrangequark 9 mass(andcolorsuperconductivity)corrections,respectively. 3 Note that for three-flavour quark matter consisting of free observationalrange massless quarks one has a4 =1 and a2 =0. In this case, PSRJ0348+0432 Eqs.(39)coincidewiththewell-knownMITbagmodelEoS, 2.5 QS,B=60(GR) λ=5×102,w=0 i.e.ρ(p)=3p+4B[45].Inournumericalcalculations,how- λ=103 ever,weconsiderthemorerealisticvaluesa4=0.7anda2= 2 λλ==510×4103 (180MeV)2[25].Furthermore,wetakeB=60MeV/fm3.4 (cid:2) λ=5×104 M We follow the same procedure as before, i.e. we inte- M/1.5 gratethebrane-modifiedTOVequationsfordifferentinitial values of the central pressure p and determine the mass- 1 c radius relation for the corresponding quark star configura- tion. Our results are presented in Figs. 6 and 7. As shown 0.5 inthetoppanelofFig.6,themaximummassandthecorre- spondingstarradiusdecreaseasλ decreasesandagreement 00 2 4 6 8 10 12 14 16 18 20 withobservationalconstraintsimposesthelowerboundλ (cid:38) R[km] 4×103 MeV/fm3, for w=0. The allowed star radii are in 3 therange8–10km.Moreover,fromthebottompanelofthe QS,B=60(GR) figure, we conclude that the central energy density for the λ=5×102,w=0 maximummassconfigurationsisboundedbyρ (cid:46)11ρ . 2.5 λ=103 c 0 λ=5×103 In Fig. 7, we present the mass-radius relation for the λ=104 case of λ = 6×103 MeV/fm3 and different values of w. 2 λ=5×104 We notice that for certain negative values of w the mass- (cid:2) M radiuscurvesbendclockwise,reachingthemaximummass M/1.5 at relatively high central densities, ρ ∼40ρ , bounded by c 0 1 therequirementofsubluminalityoftheEoS.Althoughsuch density values are higher than the maximum central den- sity of typical bare strange stars, they are below the crit- 0.5 ical density required for the formation of a stable charm- quark star. We recall that a c-quark can be created via the 0 1 2 3 4 5 6 7 8 9 10 11 12 weakreactionu+d→c+d.Sincethecharmquarkmassis ρc/ρ0 m (cid:39)1.275GeV[46],theproductionofaquarkcrequires c Fig.6 Topplot:Mass-radiusrelationforaquarkstar,usingthephe- ρ ≥ρcrit,c=9m4c/(4π2)(cid:39)1.4×1017g/cm3(cid:39)5.2×102ρ0. nomenologicalEoSinEq.(39).Thecurvesaregivenfordifferentval- Basedonthestabilityanalysis,ithasbeenfoundinthecon- uesofthebranetensionλ (inMeV/fm3),assumingavanishingdark textofGRthatcharm-quarkstarsareunstableagainstradial pressureinthestarinterior(w=0).Bottomplot:Themassofthequark oscillations[47].Inthemass-radiusplane,suchaninstabil- starversusthecentralenergydensityρc(inunitsofρ0). ityismanifestedintheinwardlyspirallingbehaviourofthe curves, and it is also confirmed through the calculation of 4.3 Hybridstars thestaroscillationfrequencies[47]. Finally,inFig.8,themaximumstarmassispresentedas Themaximumvaluesofthecentralenergydensitiesρ ,ob- c afunctionofthebranetension(toppanel)andthedarkEoS tainedfromEoSofpurelyhadronicmatter,aretypicallyin parameterw(bottompanel).Weseethatthemaximumstar the range 5ρ –10ρ . At such densities, one expects quark 0 0 mass predicted for the quark model is compatible with ob- degrees of freedom to play a relevant role inside compact servations provided that λ (cid:38)103 MeV/fm3. As in the case stars.Itisthennaturaltoconsiderthepossibilityofthefor- of pure neutron stars, for w(cid:38)−0.1, the value of Mmax re- mation of hybrid compact objects, i.e. stars that contain a mains essentially constant with the variation of w, and de- coreofquarkmatterwithacrustalofnuclearmatter.Wede- pends only on the value of λ. The same conclusion holds scribeahybridstarusingthefollowingcombinedEoS.For forw(cid:46)−0.5.Intherange−0.3<w<−0.1,however,the densities ρ (cid:46)4ρ , the EoS is modelled by Eq. (38), while 0 maximummassisquitesensitivetothevalueofw,asseen for the core of the hybrid star, corresponding to densities inthebottompanelofFig.8. ρ >4ρ ,weusethesimplephenomenologicalparametrisa- 0 tiongiveninEq.(39). 4Assuming massless quarks and neglecting the strong coupling con- Wedeterminethemass-radiusrelationofthehybridstar stant,thehypothesisthatthree-flavourquarkmatterhasanenergyper baryonlowerthanthatofordinarynucleiholdsfor59MeV/fm3(cid:46)B(cid:46) bytheintegrationofthebrane-modifiedTOVequationsfor 92MeV/fm3. differentinitialvaluesofthecentralpressure pc.Ourresults 10 3 3 observationalrange PSRJ0348+0432 2.5 QS,B=60(GR) 2.5 λ=6×103,w=0 w=1 2 w=−1 2 w=−0.6 (cid:2) w=−0.51 M(cid:2) M/M1.5 /max1.5 M 1 1 QS,B=60,w=0 w=5 0.5 0.5 w=−1 w=−0.7 w=−0.5 0 0 0 2 4 6 8 10 12 14 16 18 20 103 104 105 106 R[km] λ[MeV/fm3] 3 3 QS,B=60(GR) QS,B=60,λ=5×102 λ=6×103,w=0 λ=103 2.5 w=1 2.5 λ=5×103 w=−1 λ=104 w=−0.6 λ=5×104 2 w=−0.51 2 (cid:2) (cid:2) M M/M1.5 /max1.5 M 1 1 0.5 0.5 0 0 5 10 15 20 25 30 35 40 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 ρc/ρ0 w Fig.7 Topplot:Mass-radiusrelationforaquarkstar,usingthephe- Fig.8 Topplot:Maximumquarkstarmassasafunctionofthebrane nomenologicalEoSinEq.(39).Thecurvesaregivenfordifferentval- tensionfordifferentvaluesofthedarkEoSparameterw.Bottomplot: uesofthedarkEoSparameterwandλ =6×103 MeV/fm3.Bottom Maximum star mass as a function of the dark EoS parameter w for plot:Themassofthequarkstarversusthecentralenergydensityρc differentvaluesofthebranetension. (inunitsofρ0). arepresentedinFigs.9and10.FromthetopplotofFig.9, we conclude that the maximum mass and the correspond- persistsforcertainnegativevaluesofw,reachingthemaxi- ing star radius decrease as λ decreases. Furthermore, it is mummassatrelativelyhighcentraldensities,ρ ∼45ρ ,as c 0 seen that for λ (cid:38)8×102 MeV/fm3, and taking w=0, the depictedinthebottomplotofFig.10. massesandradiiobtainedareinagreementwiththeobser- vational constraints. The maximum mass M ∼ 1.98M(cid:12) is InFig.11,themaximumstarmassisplottedasafunc- obtainedforGR(i.e.inthelimitλ →∞),andthisvalueis tionofλ (toppanel)andw(bottompanel).Weseethatthe consistent with the observational range of the pulsar PSR maximum star mass predicted for the hybrid star model is J0348+0432 [39]. This is to be compared with the maxi- compatible with observations provided λ (cid:38)103 MeV/fm3. mummassof2.29M(cid:12)attainedwiththeNSBSk21EoS(see Thebehaviourofthemaximummasswithwissimilartothe Fig.3).Thecentralenergydensitiesareρc(cid:46)6.5ρ0(bottom oneobtainedforpureneutronandquarkstars.Forw(cid:46)−0.5 panel of Fig. 9). The allowed star radii are in the range 8– and w(cid:38)−0.1, the value of M remains essentially con- max 13km,similartothoseobtainedforpureneutronstars. stant with the variation of w, depending only on the value In Fig. 10, we present the mass-radius relation for the of λ.Yet,themaximummassisverysensibletothe varia- case of λ =6×103 MeV/fm3 and different values of the tion of w in the range −0.3<w<−0.1 (as in the case of darkEoSparameterw.Asinthecaseofquarkstars,weno- pureneutronstars).Thisisclearlyseeninthebottomplotof tice that the clockwise bending of the mass-radius curves Fig.11.

See more

The list of books you might like