loading

Logout succeed

Logout succeed. See you again!

ebook img

Derived Categories PDF

pages622 Pages
release year2019
file size3.505 MB
languageEnglish

Preview Derived Categories

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 183 EditorialBoard B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B SIMON, B. TOTARO DERIVEDCATEGORIES There have been remarkably few systematic expositions of the theory of derived categories since its inception in the work of Grothendieck and Verdier in the 1960s. Thisbookisthefirstin-depthtreatmentofthisimportantcomponentofhomological algebra. It carefully explains the foundations in detail before moving on to key applicationsincommutativeandnoncommutativealgebra,manyotherwiseunavailable outsideofresearcharticles.Theseincludecommutativeandnoncommutativedualizing complexes,perfectDGmodulesandtiltingDGbimodules. Writtenwithgraduatestudentsinmind,theemphasishereisonexplicitconstructions (with many examples and exercises) as opposed to axiomatics, with the goal of demystifying this difficult subject. Beyond serving as a thorough introduction for students, it will serve as an important reference for researchers in algebra, geometry andmathematicalphysics. AmnonYekutieli isProfessorofMathematicsatBen-GurionUniversityoftheNegev, Israel.Hisresearchinterestsareinalgebraicgeometry,ringtheory,derivedcategories anddeformationquantization.Hehastaughtseveralgraduate-levelcoursesonderived categories.Thisishisfourthbook. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Fora completeserieslisting,visitwww.cambridge.org/mathematics. AlreadyPublished 145M.VianaLecturesonLyapunovExponents 146J.-H.Evertse&K.Gyo¨ryUnitEquationsinDiophantineNumberTheory 147A.PrasadRepresentationTheory 148S.R.Garcia,J.Mashreghi&W.T.RossIntroductiontoModelSpacesandTheirOperators 149C.Godsil&K.MeagherErdo¨s–Ko–RadoTheorems:AlgebraicApproaches 150P.MattilaFourierAnalysisandHausdorffDimension 151M.Viana&K.OliveiraFoundationsofErgodicTheory 152V.I.Paulsen&M.RaghupathiAnIntroductiontotheTheoryofReproducingKernelHilbertSpaces 153R.Beals&R.WongSpecialFunctionsandOrthogonalPolynomials 154V.JurdjevicOptimalControlandGeometry:IntegrableSystems 155G.PisierMartingalesinBanachSpaces 156C.T.C.WallDifferentialTopology 157J.C.Robinson,J.L.Rodrigo&W.SadowskiTheThree-DimensionalNavierStokesEquations 158D.HuybrechtsLecturesonK3Surfaces 159H.Matsumoto&S.TaniguchiStochasticAnalysis 160A.Borodin&G.OlshanskiRepresentationsoftheInfiniteSymmetricGroup 161P.WebbFiniteGroupRepresentationsforthePureMathematician 162C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis 163A.BovierGaussianProcessesonTrees 164P.SchneiderGaloisRepresentationsand(ϕ,(cid:3))-Modules 165P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169J.M.LandsbergGeometryandComplexityTheory 170J.S.MilneAlgebraicGroups 171J.Gough&J.KupschQuantumFieldsandProcesses 172T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175G.NavarroCharacterTheoryandtheMcKayConjecture 176P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic Representations 177E.PetersonFormalGeometryandBordismOperators 178A.OgusLecturesonLogarithmicAlgebraicGeometry 179N.NikolskiHardySpaces 180D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra 181A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry 182N.NikolskiToeplitzMatricesandOperators 183A.YekutieliDerivedCategories 184C.DemeterFourierRestriction,DecouplingandApplications Derived Categories AMNON YEKUTIELI Ben-GurionUniversityoftheNegev,Israel UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06—04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108419338 DOI:10.1017/9781108292825 ©AmnonYekutieli2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-41933-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. DedicatedtoAlexanderGrothendieck,inmemoriam Contents 0 Introduction 1 0.1 OntheSubject 1 0.2 AMotivatingDiscussion: Duality 4 0.3 OntheBook 9 0.4 SynopsisoftheBook 11 0.5 WhatIsNotintheBook 22 0.6 PrerequisitesandRecommendedBibliography 23 0.7 Credo,WritingStyleandGoals 24 0.8 Acknowledgments 25 1 BasicFactsonCategories 26 1.1 SetTheory 26 1.2 NotationandConventions 27 1.3 EpimorphismsandMonomorphisms 28 1.4 ProductsandCoproducts 30 1.5 EquivalenceofCategories 31 1.6 Bifunctors 32 1.7 RepresentableFunctors 32 1.8 InverseandDirectLimits 34 2 AbelianCategoriesandAdditiveFunctors 37 2.1 LinearCategories 37 2.2 AdditiveCategories 38 2.3 AbelianCategories 40 2.4 AMethodforProducingProofsinAbelianCategories 44 2.5 AdditiveFunctors 49 2.6 ProjectiveObjects 55 2.7 InjectiveObjects 57 vii viii Contents 3 DifferentialGradedAlgebra 62 3.1 GradedAlgebra 62 3.2 DG(cid:139)-Modules 72 3.3 DGRingsandModules 74 3.4 DGCategories 78 3.5 DGFunctors 80 3.6 ComplexesinAbelianCategories 82 3.7 TheLongExactCohomologySequence 84 3.8 TheDGCategoryC(A,M) 90 3.9 ContravariantDGFunctors 94 4 TranslationsandStandardTriangles 101 4.1 TheTranslationFunctor 101 4.2 TheStandardTriangleofaStrictMorphism 105 4.3 TheGaugeofaGradedFunctor 107 4.4 TheTranslationIsomorphismofaDGFunctor 108 4.5 StandardTrianglesandDGFunctors 109 4.6 ExamplesofDGFunctors 113 5 TriangulatedCategoriesandFunctors 117 5.1 TriangulatedCategories 117 5.2 TriangulatedandCohomologicalFunctors 122 5.3 SomePropertiesofTriangulatedCategories 125 5.4 TheHomotopyCategoryIsTriangulated 132 5.5 FromDGFunctorstoTriangulatedFunctors 141 5.6 TheOppositeHomotopyCategoryIsTriangulated 143 6 LocalizationofCategories 146 6.1 TheFormalismofLocalization 146 6.2 OreLocalization 148 6.3 LocalizationofLinearCategories 162 7 TheDerivedCategoryD(A,M) 165 7.1 LocalizationofTriangulatedCategories 165 7.2 DefinitionoftheDerivedCategory 172 7.3 BoundednessConditionsinK(A,M) 176 7.4 ThickSubcategoriesofM 180 7.5 TheEmbeddingofMinD(M) 182 7.6 TheOppositeDerivedCategoryIsTriangulated 183

See more

The list of books you might like