Logout succeed
Logout succeed. See you again!

Electromagnetic Waves and Antennas, Exercise Book PDF
Preview Electromagnetic Waves and Antennas, Exercise Book
Electromagnetic Waves and Antennas Exercise book Sophocles J. Orfanidis1 Davide Ramaccia2 Alessandro Toscano2 1Department of Electrical & Computer Engineering Rutgers University, Piscataway, NJ 08854 [email protected] www.ece.rutgers.edu/~orfanidi/ewa 2Department of Applied Electronics, University "Roma Tre" via della Vasca Navale, 84 00146, Rome, Italy [email protected] [email protected] S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 Table of Contents Chapter1 Maxwell's Equations...................................................................................1 1.1 Exercise..........................................................................................................1 1.2 Exercise..........................................................................................................6 1.3 Exercise........................................................................................................12 1.4 Exercise........................................................................................................16 1.5 Exercise........................................................................................................18 1.6 Exercise........................................................................................................20 1.7 Exercise........................................................................................................25 1.8 Exercise........................................................................................................29 1.9 Exercise........................................................................................................30 1.10 Exercise........................................................................................................32 1.11 Exercise........................................................................................................42 1.12 Exercise........................................................................................................54 1.13 Exercise........................................................................................................56 D. Ramaccia and A. Toscano S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 Chapter1 Maxwell's Equations 1.1 Exercise Prove the vector algebra identities: a) A×(B×C) =B(A⋅C)-C(A⋅B) It is possible to write the vectors in the form: ⎧A=A xˆ +A yˆ +A zˆ x y z ⎪⎪ ⎨B=Bxxˆ +Byyˆ +Bzzˆ (1.1.1) ⎪ C=C xˆ +C yˆ +C zˆ ⎪⎩ x y z and to use the follow relationship: xˆ yˆ zˆ U×V = U U U = x y z (1.1.2) V V V x y z = xˆ(U V −U V )−yˆ(U V −U V )+zˆ(U V −U V ) y z z y x z z x x y y x Now we can prove the algebra identities with simply mathematical substitutions: A×(B×C)=A×(xˆ(B C −B C )−yˆ(B C −B C )+zˆ(B C −B C ))= y z z y x z z x x y y x = xˆ(A (B C −B C )+A (B C −B C )) y x y y x z x z z x (1.1.3) ( ( ) ( )) −yˆ A B C −B C −A B C −B C x x y y x z y z z y +zˆ(−A (B C −B C )−A (B C −B C )) x x z z x y y z z y Expanding the terms in (1.1.3), we have: A×(B×C)= ( ) +xˆ A B C −A B C +A B C −A B C y x y y y x z x z z z x ( ) +yˆ A B C −A B C +A B C −A B C (1.1.4) x y x x x y z y z z z y ( ) +zˆ A B C −A B C −A B C +A B C x z x x x z y y z y z y Let us write eq. (1.1.4) in matrix form, separating the terms with the minus sign and the terms with the plus sign: D. Ramaccia and A. Toscano Pag. 1 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 ⎡ 0 B A C B A C ⎤ ⎡ 0 C A B C A B ⎤ y x x z x x y x x z x x ⎢ ⎥ ⎢ ⎥ A×(B×C)= ⎢B A C 0 B A C ⎥−⎢C A B 0 C A B ⎥(1.1.5) x y y z y y x y y z y y ⎢ ⎥ ⎢ ⎥ B A C B A C 0 C A B C A B 0 ⎢⎣ x z z y z z ⎥⎦ ⎢⎣ x z z y z z ⎥⎦ Note that the elements of the diagonal of each matrix are zero. Each term can be filled with the product of the three component with the same subscript (a = A B C ): ii i i i ⎡B A C B A C B A C ⎤ ⎡C A B C A B C A B ⎤ x x x y x x z x x x x x y x x z x x ⎢ ⎥ ⎢ ⎥ A×(B×C)=⎢B A C B A C B A C ⎥−⎢C A B C A B C A B ⎥= x y y y y y z y y x y y y y y z y y ⎢ ⎥ ⎢ ⎥ B A C B A C B A C C A B C A B C A B ⎢⎣ x z z y z z z z z⎥⎦ ⎢⎣ x z z y z z z z z⎥⎦ ( ) ( ) ( ) =+A C B xˆ+B yˆ+B zˆ +A C B xˆ+B yˆ+B zˆ +A C B xˆ+B yˆ+B zˆ − x x x y z y y x y z z z x y z −A B (C xˆ+C yˆ+C zˆ)−A B (C xˆ+C yˆ+C zˆ)−A B (C xˆ+C yˆ+C zˆ)= (1.1.6) x x x y z y y x y z z z x y z ( ) ( ) =B A C +A C +A C −C A B +A B +A B = x x y y z z x x y y z z =B(A⋅C)−C(A⋅B) b) A⋅(B×C)= B⋅(C×A)= C⋅(A×B) Using relationships (1.1.1) and (1.1.2), we can write: A⋅(B×C)= A⋅(xˆ(B C −B C )−yˆ(B C −B C )+zˆ(B C −B C ))= y z z y x z z x x y y x (A B C −A B C )−(A B C −A B C )+(A B C −A B C )= (1.1.7) x y z x z y y x z y z x z x y z y x ( ) ( ) A B C +A B C +A B C − A B C +A B C +A B C x y z y z x z x y x z y y x z z y x B⋅(C×A)= B⋅(xˆ(C A −C A )−yˆ(C A −C A )+zˆ(A C −A C ))= y z z y x z z x x y y x ( ) ( ) ( ) B C A −B C A − B C A −B C A + B A C −B A C = x y z x z y y x z y z x z x y z y x (1.1.8) ( ) ( ) B C A +B C A +B C A − B C A +B C A +B C A = x y z y z x z x y x z y y x z z y x ↑ order them ( ) ( ) A B C +A B C +A B C − A B C +A B C +A B C x y z y z x z x y x z y y x z z y x C⋅(A×B)=C⋅(xˆ(A B −A B )−yˆ(A B −A B )+zˆ(A B −A B ))= y z z y x z z x x y y x ( ) ( ) ( ) C A B −C A B − C A B −C A B + C A B −C A B = x y z x z y y x z y z x z x y z y x (1.1.9) ( ) ( ) C A B +C A B +C A B − C A B +C A B +C A B = x y z y z x z x y x z y y x z z y x ↑ order them ( ) ( ) A B C +A B C +A B C − A B C +A B C +A B C x y z y z x z x y x z y y x z z y x If we compare the last row of each expression, we note that they are identical so the algebra identity is verified. D. Ramaccia and A. Toscano Pag. 2 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 2 2 2 2 c) A×B + A⋅B = A B Using relationships (1.1.1) and (1.1.2), we can write: 2 A×B2 + A⋅B2 = xˆ(A B −A B )−yˆ(A B −A B )+zˆ(A B −A B ) + y z z y x z z x x y y x ( )2 + A B +A B +A B = x x y y z z 2 ⎛⎜ (AyBz −AzBy)2 +(AxBz −AzBx)2 +(AxBy −AyBx)2 ⎞⎟ +(AxBx +AyBy +AzBz)2 = ⎝ ⎠ (A B −A B )2 +(A B −A B )2 +(A B −A B )2 +(A B +A B +A B )2 = y z z y x z z x x y y x x x y y z z 2 2 2 2 2 2 2 2 A B +A B −2A B A B +A B +A B −2A B A B + y z z y y z z y x z z x x z z x 2 2 2 2 ( )2 A B +A B −2A B A B + A B +A B +A B = x y y x x y y x x x y y z z 2 2 2 2 2 2 2 2 A B +A B −2A B A B +A B +A B −2A B A B + y z z y y z z y x z z x x z z x 2 2 2 2 2 2 2 2 2 2 A B +A B −2A B A B +A B +A B +A B + x y y x x y y x x x y y z z 2A B A B +2A B A B +2A B A B = x y y x x z z x x y y x ↑ cancel the opposites 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 A B +A B +A B +A B +A B +A B +A B +A B +A B = y z z y x z z x x y y x x x y y z z ( 2 2 2)( 2 2 2) 2 2 A +A +A B +B +B = A B x y z x y z d) A=nˆ×A×nˆ +(nˆ⋅A)nˆ Does it make a difference whether nˆ ×A×nˆ is taken to mean (nˆ ×A)×nˆ or nˆ ×(A×nˆ)? The unit vector nˆcan be expressed as follow: ⎧nˆ = n xˆ +n yˆ +n zˆ ⎪ x y z (1.1.10) ⎨ ⎪nˆ = n2 +n2 +n2 =1 ⎩ x y z Let us begin considering the first case: D. Ramaccia and A. Toscano Pag. 3 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 (nˆ×A)×nˆ = ⎡xˆ(n A −n A )− yˆ(n A −n A )+zˆ(n A −n A )⎤×nˆ = ⎣ y z z y x z z x x y y x ⎦ +xˆ⎡(n A −n A )n −(n A −n A )n ⎤+ ⎣ z x x z z x y y x y⎦ − yˆ ⎡(n A −n A )n −(n A −n A )n ⎤+ ⎣ y z z y z x y y x x⎦ +zˆ⎡(n A −n A )n −(n A −n A )n ⎤ = (1.1.11) ⎣ y z z y y z x x z x⎦ +xˆ⎡n2A −n n A −n n A +n2A ⎤+ ⎣ z x x z z x y y y x⎦ − yˆ ⎡n n A −n2A −n2A +n n A ⎤+ ⎣ y z z z y x y y x x⎦ +zˆ⎡n2A −n n A −n n A +n2A ⎤ ⎣ y z z y y z x x x z⎦ And now consider the second case: nˆ×(A×nˆ)=nˆ×⎡xˆ(A n −A n )− yˆ(A n −A n )+zˆ(A n −A n )⎤ = ⎣ y z z y x z z x x y y x ⎦ +xˆ⎡n (A n −A n )−n (A n −A n )⎤+ ⎣ y x y y x z z x x z ⎦ −yˆ ⎡n (A n −A n )−n (A n −A n )⎤+ ⎣ x x y y x z y z z y ⎦ +zˆ⎡n (A n −A n )−n (A n −A n )⎤ = (1.1.12) ⎣ x z x x z y y z z y ⎦ +xˆ⎡A n2 −A n n −A n n +A n2⎤+ ⎣ x y y y x z z x x z⎦ −yˆ ⎡A n n −A n2 −A n2 +A n n ⎤+ ⎣ x x y y x y z z z y⎦ +zˆ⎡A n2 −A n n −A n n +A n2⎤ ⎣ z x x x z y y z z y⎦ It is very easy to show that (nˆ × A)×nˆ = nˆ ×(A×nˆ). The second term of the identity can be written as: D. Ramaccia and A. Toscano Pag. 4 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 ( )( ) (nˆ ⋅A)nˆ = n A +n A +n A n xˆ +n yˆ +n zˆ = x x y y z z x y z +xˆ⎡n (n A +n A +n A )⎤+ ⎣ x x x y y z z ⎦ +yˆ ⎡n (n A +n A +n A )⎤+ ⎣ y x x y y z z ⎦ +zˆ⎡n (n A +n A +n A )⎤ = ⎣ z x x y y z z ⎦ (1.1.13) +xˆ⎡n2A +n n A +n n A ⎤+ ⎣ x x x y y x z z⎦ +yˆ ⎡n n A +n2A +n n A ⎤+ ⎣ y x x y y y z z⎦ +zˆ⎡n n A +n n A +n2A ⎤ ⎣ z x x z y y z z⎦ Adding the two results, we obtain: nˆ×A×nˆ +(nˆ ⋅A)nˆ = +xˆ⎡A n2 −A n n −A n n +A n2⎤+ ⎣ x y y y x z z x x z⎦ −yˆ ⎡A n n −A n2 −A n2 +A n n ⎤+ ⎣ x x y y x y z z z y⎦ +zˆ⎡A n2 −A n n −A n n +A n2⎤+ ⎣ z x x x z y y z z y⎦ +xˆ⎡n2A +n n A +n n A ⎤+ ⎣ x x x y y x z z⎦ +yˆ ⎡n n A +n2A +n n A ⎤+ ⎣ y x x y y y z z⎦ +zˆ⎡n n A +n n A +n2A ⎤ = ⎣ z x x z y y z z⎦ ↑ change signs in parentheses at first yˆ and add +xˆ⎡A n2 −A n n −A n n +A n2 +n2A +n n A +n n A ⎤+ ⎣ x y y y x z z x x z x x x y y x z z⎦ +yˆ ⎡A n2 +A n2 −A n n −A n n +n n A +n2A +n n A ⎤+ ⎣ y x y z x x y z z y y x x y y y z z⎦ +zˆ⎡A n2 −A n n −A n n +A n2 +n n A +n n A +n2A ⎤ = ⎣ z x x x z y y z z y z x x z y y z z⎦ (1.1.14) +xˆA ⎡n2 +n2 +n2⎤++yˆA ⎡n2 +n2 +n2⎤++zˆA ⎡n2 +n2 +n2⎤ = A x ⎣ y z x⎦ y ⎣ x z y⎦ z ⎣ x y z⎦ D. Ramaccia and A. Toscano Pag. 5 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 1.2 Exercise Prove the vector analysis identities: 1. ∇×(∇φ)= 0 2. ∇⋅(φ∇ψ)= φ∇2ψ+∇φ⋅∇ψ (Green's first identity) 3. ∇⋅(φ∇ψ−ψ∇φ)=φ∇2ψ−ψ∇2φ (Green's second identity) 4. ∇⋅(φA)= (∇φ)⋅A +φ∇⋅A 5. ∇×(φA)= (∇φ)×A + φ∇×A 6. ∇⋅(∇×A)= 0 7. ∇ ⋅A ×B = B⋅(∇× A)− A ⋅(∇×B) 8. ∇×(∇×A)=∇(∇⋅A)−∇2A First of all we have to express the operator ∇in general orthogonal coordinates in four common applications. All vector components are presented with respect to the normalized base (eˆ ,eˆ ,eˆ ): 1 2 3 ⎧ eˆ ∂φ eˆ ∂φ eˆ ∂φ 1 2 3 ∇φ= + + ⎪ h ∂q h ∂q h ∂q ⎪ 1 1 2 2 3 3 ⎪ 1 ⎡ ∂ ⎛h h ∂φ ⎞ ∂ ⎛h h ∂φ ⎞ ∂ ⎛h h ∂φ ⎞⎤ ⎪∇2φ= ⎢ ⎜ 2 3 ⎟+ ⎜ 1 3 ⎟+ ⎜ 1 2 ⎟⎥ ⎪ h1h2h3 ⎢⎣∂q1⎝ h1 ∂q1⎠ ∂q2 ⎝ h2 ∂q2 ⎠ ∂q3 ⎝ h3 ∂q3 ⎠⎥⎦ ⎪ ⎪ 1 ⎡ ∂ ∂ ∂ ⎤ ∇⋅F = (Fh h )+ (F h h )+ (F h h ) ⎪ ⎢ 1 2 3 2 1 3 3 1 2 ⎥ h h h ∂q ∂q ∂q ⎪ 1 2 3 ⎣ 1 2 3 ⎦ ⎪⎪ h eˆ h eˆ h eˆ 1 1 2 2 3 3 ⎨ ⎪ 1 ∂ ∂ ∂ ∇×F = = ⎪ h h h ∂q ∂q ∂q 1 2 3 1 2 3 ⎪ ⎪ h F h F h F 1 1 2 2 3 3 ⎪ ⎪ + eˆ1 ⎡ ∂ (h F )− ∂ (h F )⎤+ eˆ2 ⎡ ∂ (h F )− ∂ (h F )⎤+ ⎪ ⎢ 3 3 2 2 ⎥ ⎢ 1 1 3 3 ⎥ h h ∂q ∂q h h ∂q ∂q ⎪ 2 3 ⎣ 2 3 ⎦ 1 3 ⎣ 3 1 ⎦ ⎪ eˆ ⎡ ∂ ∂ ⎤ ⎪ + 3 ⎢ (h2F2)− (h1F1)⎥ ⎪⎩ h1h2 ⎣∂q1 ∂q2 ⎦ (1.2.1) where (h ,h ,h )are the metric coefficients. For common geometries they are defined as follow: 1 2 3 D. Ramaccia and A. Toscano Pag. 6 S.J. Orfanidis – Electromagnetic Waves and Antennas Exercises Chapter 1 ⎧h =1, h =1, h =1 (rectangular coordinates) 1 2 3 ⎪ ⎨h1 =1, h2 = r, h3 =1 (cylindrical coordinates) (1.2.2) ⎪ h =1, h = r, h = rsinϑ (spherical coordinates) ⎩ 1 2 3 For simplicity, the proves are done using rectangular coordinates (h =1, h =1, h =1): 1 2 3 • Identity n° 1 eˆ eˆ eˆ 1 2 3 ∂ ∂ ∂ ∇×(∇φ)= = ∂q ∂q ∂q 1 2 3 ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ ⎛ ∂φ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂q ∂q ∂q ⎝ 1⎠ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎡ ⎛ ∂ ∂φ ∂ ∂φ ⎞ ⎛ ∂ ∂φ ∂ ∂φ ⎞ ⎤ ⎢eˆ1⎜ − ⎟−eˆ2⎜ − ⎟+⎥ ∂q ∂q ∂q ∂q ∂q ∂q ∂q ∂q ⎢ ⎝ 2 3 3 2 ⎠ ⎝ 1 3 3 1⎠ ⎥ = =0 ⎢ ⎥ ⎛ ∂ ∂φ ∂ ∂φ ⎞ ⎢+eˆ3⎜ − ⎟ ⎥ ⎢ ∂q ∂q ∂q ∂q ⎥ ⎣ ⎝ 1 2 2 1⎠ ⎦ ∂ ∂ ∂ ∂ For the property of linearity of the derivate operator φ = φ, so each term in the ∂q ∂q ∂q ∂q i j j i parentheses vanishes and also the result. • Identity n° 2 ⎛ ∂ψ ∂ψ ∂ψ ⎞ ∇⋅(φ∇ψ)=∇⋅⎜eˆ1φ +eˆ2φ +eˆ3φ ⎟ = ∂q ∂q ∂q ⎝ 1 2 3 ⎠ ∂ ⎛ ∂ψ ⎞ ∂ ⎛ ∂ψ ⎞ ∂ ⎛ ∂ψ ⎞ = ⎜φ ⎟+ ⎜φ ⎟+ ⎜φ ⎟ = ∂q ∂q ∂q ∂q ∂q ∂q 1⎝ 1 ⎠ 2 ⎝ 2 ⎠ 3 ⎝ 3 ⎠ ⎛ ∂φ ∂ψ ∂2ψ⎞ ⎛ ∂φ ∂ψ ∂2ψ⎞ ⎛ ∂φ ∂ψ ∂2ψ⎞ =⎜ +φ ⎟+⎜ +φ ⎟+⎜ +φ ⎟ = ⎜∂q ∂q ∂q ⎟ ⎜∂q ∂q ∂q ⎟ ⎜∂q ∂q ∂q ⎟ ⎝ 1 1 1 ⎠ ⎝ 2 2 2 ⎠ ⎝ 3 3 3 ⎠ ⎛∂2ψ ∂2ψ ∂2ψ⎞ ⎛ ∂φ ∂ψ ∂φ ∂ψ ∂φ ∂ψ ⎞ 2 =φ⎜ + + ⎟+⎜ + + ⎟ = φ∇ ψ+∇φ⋅∇ψ ⎜⎝ ∂q1 ∂q2 ∂q3 ⎟⎠ ⎝∂q1 ∂q1 ∂q2 ∂q2 ∂q3 ∂q3 ⎠ • Identity n° 3 First of all we expand the sum inside parentheses: ⎧ ∂ψ ∂ψ ∂ψ φ∇ψ =φeˆ +φeˆ +φeˆ ⎪ 1 2 3 ⎪ ∂q1 ∂q2 ∂q3 ⎨ ∂φ ∂φ ∂φ ⎪ψ∇φ=ψeˆ +ψeˆ +ψeˆ 1 2 3 ⎪ ∂q ∂q ∂q ⎩ 1 2 3 D. Ramaccia and A. Toscano Pag. 7