loading

Logout succeed

Logout succeed. See you again!

ebook img

Enlightening symbols: a short history of mathematical notation and its hidden powers PDF

pages311 Pages
release year2018
file size29.216 MB
languageEnglish

Preview Enlightening symbols: a short history of mathematical notation and its hidden powers

“Mazur” — // — : — page  — # Enlightening Symbols “Mazur” — // — : — page  — # Also by Joseph Mazur EuclidintheRainforest:DiscoveringUniversalTruth inLogicandMath(2006) Zeno’sParadox:UnravelingtheAncientMystery behindtheScienceofSpaceandTime(2007) What’sLuckGottoDowithIt?TheHistory,Mathematics, andPsychologyoftheGambler’sIllusion(2010) Edited Number:TheLanguageofScience(2007) “Mazur” — // — : — page  — # Enlightening Symbols A Short History of Mathematical Notation and Its Hidden Powers Joseph Mazur PrincetonUniversityPress PrincetonandOxford “Mazur” — // — : — page  — # Copyright©byJosephMazur Requestsforpermissiontoreproducematerialfromthisworkshouldbesentto Permissions,PrincetonUniversityPress PublishedbyPrincetonUniversityPress,WilliamStreet, Princeton,NewJersey IntheUnitedKingdom:PrincetonUniversityPress,OxfordStreet, Woodstock,OxfordshireOXTW press.princeton.edu AllRightsReserved LibraryofCongressCataloging-in-PublicationData Mazur,Joseph. Enlighteningsymbols:ashorthistoryofmathematicalnotationanditshidden powers/JosephMazur. pagescm Includesbibliographicalreferencesandindex. ISBN----(hardcover:alk.paper).Mathematical notation—History.I.Title. QA.M .(cid:156)—dc  BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinMinionandCandida Printedonacid-freepaper.“ PrintedintheUnitedStatesofAmerica           “Mazur” — // — : — page v — # To my big brother, Barry, who taught me from 0 “Mazur” — // — : — page vi — # “Mazur” — // — : — page vii — # Contents Introduction ix Definitions xxi NoteontheIllustrations xxiii Part 1 Numerals 1 . CuriousBeginnings  . CertainAncientNumberSystems  . SilkandRoyalRoads  . TheIndianGift  . ArrivalinEurope  . TheArabGift  . LiberAbbaci  . RefutingOrigins  Part 2 Algebra 81 . SansSymbols  . Diophantus’sArithmetica  . TheGreatArt  . SymbolInfancy  . TheTimidSymbol  . HierarchiesofDignity  Contents vii “Mazur” — // — : — page viii — # . VowelsandConsonants  . TheExplosion  . ACatalogueofSymbols  . TheSymbolMaster  . TheLastoftheMagicians  Part 3 The Power of Symbols 177 . RendezvousintheMind  . TheGoodSymbol  . InvisibleGorillas  . MentalPictures  . Conclusion  AppendixALeibniz’sNotation  AppendixBNewton’sFluxionofxn  AppendixCExperiment  AppendixDVisualizingComplexNumbers  AppendixEQuaternions  Acknowledgments  Notes  Index  viii Contents “Mazur” — // — : — page ix — # Introduction Amathematician,amusician,andapsychologistwalkedintoabar... Severalyearsago,beforeIhadanythoughtsofwritingabookonthehistoryof symbols,IhadaconversationwithafewcolleaguesattheCavaTuracciolo,alittle winebar inthe villageof Bellagioon LakeComo. Thepsychologist declaredthat symbolshadbeenaroundlongbeforehumanshadaverballanguage,andthatthey areattherootsofthemostbasicandprimitivethoughts.Themusicianpointedout thatmodernmusicalnotationismostlyattributedtooneBenedictinemonkGuido d’Arezzo,wholivedattheturnofthefirstmillennium,butthatamoreprimitive formofsymbolnotationgoesalmostasfarbackasPhoenicianwriting.I,themath- ematician,astonishedmyfriendsbyrevealingthat,otherthannumerals,mathemat- icalsymbols—evenalgebraicequations—arerelativelyrecentcreations,andthatal- most all mathematical expressions were rhetorical before the end of the fifteenth century. “What?!”thepsychologistsnapped.“Whataboutmultiplication?Youmeanto tellusthattherewasnosymbolfor‘times’?” “Notbeforethesixteenth...maybeevenseventeenthcentury.” “Andequality?Whatabout‘equals’?themusicianasked. “Notbefore...oh...thesixteenthcentury.” “ButsurelyEuclidmusthavehadasymbolforaddition,”saidthepsychologist. “WhataboutthePythagoreantheorem,thatthingaboutaddingthesquaresofthe sidesofarighttriangle?” Introduction ix

See more

The list of books you might like