loading

Logout succeed

Logout succeed. See you again!

ebook img

Extension of Euclidean operator radius inequalities PDF

file size0.17 MB
languageEnglish

Preview Extension of Euclidean operator radius inequalities

EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES 1 1 2 MOHAMMAD SAL MOSLEHIAN , MOSTAFA SATTARI AND KHALID SHEBRAWI 5 Abstract. ToextendtheEuclideanoperatorradius,wedefinew forann-tuples 1 p 20 ofoperators(T1,...,Tn)inB(H )bywp(T1,...,Tn):=supkxk=1( ni=1|hTix,xi|p)p1 for p 1. We generalize some inequalities including Euclidean operator radius P n ≥ of two operators to those involving w . Further we obtain some lower and upper a p J bounds for w . Our mainresult states that if f andg arenonnegative continuous p 1 functions on [0, ) satisfying f(t)g(t)=t for all t [0, ), then 3 ∞ ∈ ∞ n .FA] fworprpa(llAp∗1T1B1,1,r...,1Aa∗nnTdnoBpne)ra≤to12rs(cid:13)(cid:13)(cid:13)(cid:13)iXin=1B(cid:16)(H(cid:2)B)i∗.f2(|Ti|)Bi(cid:3)rp+(cid:2)A∗ig2(|Ti∗|)Ai(cid:3)rp(cid:17)(cid:13)(cid:13)(cid:13)(cid:13) h ≥ ≥ (cid:13) (cid:13) t a m [ 1 1. Introduction v 3 Let B(H ) be the C∗-algebra of all bounded linear operators on a Hilbert space 8 0 (H , , ). The numerical radius of A B(H ) is defined by 0 h· ·i ∈ 0 2. w(A) = sup Ax,x : x H , x = 1 . {|h i| ∈ k k } 0 5 1 It is well known that w( ) defines a norm on B(H ), which is equivalent to the usual : · v operator norm . Namely, we have i k·k X r 1 a A w(A) A . 2k k ≤ ≤ k k for each A B(H ). It is known that if A B(H ) is self-adjoint, then w(A) = A . ∈ ∈ k k An important inequality for w(A) is the power inequality stating that w(An) ≤ wn(A) for n = 1,2,.... There are many inequalities involving numerical radius; see [2, 3, 4, 10, 11, 12] and references therein. The Euclidean operator radius of an n-tuple (T ,...,T ) B(H )(n) := B(H ) 1 n ∈ × 2010 Mathematics Subject Classification. 47A12, 47B15,47A30, 47A63. Key words and phrases. Euclideanoperatorradius,numericalradius, Cartesiandecomposition, self-adjoint operator. 1 2 M.S. MOSLEHIAN,M. SATTARI,K. SHEBRAWI ... B(H ) was defined in [9] by × 1 n 2 w (T ,...,T ) := sup T x,x 2 . e 1 n i |h i| kxk=1 ! i=1 X The particular cases n = 1 and n = 2 are numerical radius and Euclidean operator radius. Some interesting properties of this radius were obtained in [9]. For example, it is established that 1 1 1 n 2 n 2 T T∗ w (T , ,T ) T T∗ . (1.1) 2√n (cid:13) i i (cid:13) ≤ e 1 ··· n ≤ (cid:13) i i (cid:13) (cid:13)Xi=1 (cid:13) (cid:13)Xi=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) We also observe tha(cid:13)t if A = B(cid:13) +iC is the Cartesian(cid:13)decompo(cid:13)sition of A, then (cid:13) (cid:13) (cid:13) (cid:13) w2(B,C) = sup Bx,x 2 + Cx,x 2 = sup Ax,x 2 = w2(A). e {|h i| |h i| } |h i| kxk=1 kxk=1 By the above inequality and A∗A+AA∗ = 2(B2 +C2), we have 1 1 A∗A+AA∗ w2(A) A∗A+AA∗ . 16k k ≤ ≤ 2k k We define w for n-tuples of operators (T ,...,T ) B(H )(n) for p 1 by p 1 n ∈ ≥ 1 n p w (T ,...,T ) := sup T x,x p . p 1 n i |h i| kxk=1 ! i=1 X It follows from Minkowski’s inequality for two vectors a = (a ,a ) and b = (b ,b ), 1 2 1 2 namely, ( a +b p + a +b p)1p ( a p + a p)p1 +( b p + b p)p1 for p > 1 1 1 2 2 1 2 1 2 | | | | ≤ | | | | | | | | that w is a norm. p Moreover w ,p 1, for n-tuple of operators (T ,...,T ) B(H )(n) satisfies the p 1 n ≥ ∈ following properties: (i) w (T ,...,T ) = 0 T = ... = T = 0. p 1 n 1 n ⇔ (ii) w (λT ,...,λT ) = λ w (T ,...,T ) for all λ C. p 1 n p 1 n | | ∈ (iii)w (T +T´,...,T +T´) w (T ,...,T )+w (T´,...,T´)for(T´,...,T´) p 1 1 n n p 1 n p 1 n 1 n ≤ ∈ B(H )(n). (iv) w (X∗T X,...,X∗T X) X 2w (T ,...,T ) for X B(H ). p 1 n p 1 n ≤ k k ∈ Dragomir[1]obtainedsomeinequalitiesfortheEuclideanoperatorradiusw (B,C) = e 1 sup ( Bx,x 2 + Cx,x 2)2 oftwoboundedlinearoperatorsinaHilbertspace. kxk=1 |h i| |h i| In section 2 of this paper we extend some his results including inequalities for the Euclidean operator radius of linear operators to w (p 1). In addition, we apply p ≥ some known inequalities for getting new inequalities for w in two operators. p EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES 3 In section 3 we prove inequalities for w for n-tuples of operators. Some of our result p in this section, generalize some inequalities in section 2. Further, we find some lower and upper bounds for w . p 2. Inequalities for w for two operators p To prove our generalized numerical radius inequalities, we need several known lemmas. The first lemma is a simple result of the classical Jensen inequality and a generalized mixed Cauchy–Schwarz inequality [7, 8, 6]. Lemma 2.1. For a,b 0, 0 α 1 and r = 0, ≥ ≤ ≤ 6 (a) aαb1−α αa+(1 α)b [αar +(1 α)br]1r for r 1, ≤ − ≤ − ≥ (b) If A B(H ),then Ax,y 2 A 2αx,x A∗ 2(1−α)y,y for all x,y H , ∈ |h i| ≤ h| | ih| | i ∈ where A = (A∗A)1. 2 | | (c) Let A B(H ), and f and g be nonnegative continuous functions on [0, ) ∈ ∞ satisfying f (t)g(t) = t for all t [0, ). Then ∈ ∞ Ax,y f ( A )x g( A∗ )y |h i| ≤ k | | kk | | k for all x,y H . ∈ Lemma 2.2 (McCarthy inequality [5]). Let A B(H ), A 0 and let x H ∈ ≥ ∈ be any unit vector. Then (a) Ax,x r Arx,x for r 1, h i ≤ h i ≥ (b) Arx,x Ax,x r for 0 < r 1. h i ≤ h i ≤ Inequalities ofthe following lemma were obtainedfor thefirst timeby Clarkson[7]. Lemma 2.3. Let X be a normed space and x,y X. Then for all p 2 with ∈ ≥ 1 + 1 = 1, p q (a) 2( x p + y p)q−1 x+y q + x y q, k k k k ≤ k k k − k (b) 2( x p + y p) x+y p + x y p 2p−1( x p + y p), k k k k ≤ k k k − k ≤ k k k k (c) x+y p + x y p 2( x q + y q)p−1. k k k − k ≤ k k k k If 1 < p 2 the converse inequalities hold. ≤ Makingthetransformationsx x+y andy x−y weobservethatinequalities (a) → 2 → 2 and (c) in Lemma 2.3 are equivalent and so are the first and the second inequalities of (b). First of all we obtain a relation between w and w for p 1. p e ≥ 4 M.S. MOSLEHIAN,M. SATTARI,K. SHEBRAWI Proposition 2.4. Let B,C B(H ). Then ∈ wp(B,C) wq(B,C) 2q1−p1wp(B,C) ≤ ≤ for p q 1. In particular ≥ ≥ wp(B,C) we(B,C) 221−p1wp(B,C) (2.1) ≤ ≤ for p 2, and ≥ 221−p1wp(B,C) we(B,C) wp(B,C) ≤ ≤ for 1 p 2. ≤ ≤ Proof. An application of Jensen’s inequality says that for a,b > 0 and p q > 0, ≥ we have (ap +bp)p1 (aq +bq)q1 . ≤ Let x H be a unit vector. Choosing a = Bx,x and b = Cx,x , we have ∈ |h i| |h i| 1 1 Bx,x p + Cx,x p p Bx,x q + Cx,x q q. |h i| |h i| ≤ |h i| |h i| (cid:16) (cid:17) (cid:16) (cid:17) Now the first inequality follows by taking the supremum over all unit vectors in H . A simple consequence of the classical Jensen’s inequality concerning the convexity or the concavity of certain power functions says that for a,b 0,0 α 1 and ≥ ≤ ≤ p q, we have ≥ (αaq +(1 α)bq)1q (αap +(1 α)bp)p1 . − ≤ − For α = 1, we get 2 (aq +bq)q1 21q−p1 (ap +bp)p1 . ≤ Again let x H be a unit vector. Choosing a = Bx,x and b = Cx,x we get ∈ |h i| |h i| 1 1 Bx,x q + Cx,x q q 21q−p1 Bx,x p + Cx,x p p. |h i| |h i| ≤ |h i| |h i| (cid:16) (cid:17) (cid:16) (cid:17) Now the second inequality follows by taking the supremum over all unit vectors in H . (cid:3) On making use of inequality (2.1) we find a lower bound for w (p 2). p ≥ Corollary 2.5. If B,C B(H ), then for p 2 ∈ ≥ wp(B,C) 2p1−2 B∗B +C∗C 21 . ≥ k k EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES 5 Proof. According to inequalities (1.1) and (2.1) we can write 1 we(B,C) B∗B +C∗C 21 ≥ 2√2k k and wp(B,C) 2p1−21we(B,C), ≥ (cid:3) respectively. We therefore get desired inequality. The next result is concerned with some lower bounds for w . This consequence p has several inequalities as special cases. Our result will be generalized to n-tuples of operators in the next section. Proposition 2.6. Let B,C B(H ). Then for p 1 ∈ ≥ wp(B,C) 2p1−1max(w(B +C),w(B C)). (2.2) ≥ − This inequality is sharp. Proof. We use convexity of function f(t) = tp (p 1) as follows: ≥ ( Bx,x p + Cx,x p)p1 2p1−1( Bx,x + Cx,x ) |h i| |h i| ≥ |h i| |h i| 2p1−1 Bx,x Cx,x ≥ |h i±h i| = 2p1−1 (B C)x,x . |h ± i| Taking supremum over x H with x = 1 yields that ∈ k k wp(B,C) 2p1−1w(B C). ≥ ± 1 For sharpness one can obtain the same quantity 2pw(B) on both sides of the in- equality by putting B = C. (cid:3) Corollary 2.7. If A = B + iC is the Cartesian decomposition of A, then for all p 2 ≥ wp(B,C) 2p1−1max( B +C , B C ), ≥ k k k − k and w(A) 2p1−2max( (1 i)A+(1+i)A∗ , (1+i)A+(1 i)A∗ ) ≥ k − k k − k Proof. Obviously by inequality (2.2) we have the first inequality. For the second we (cid:3) use inequality (2.1). 6 M.S. MOSLEHIAN,M. SATTARI,K. SHEBRAWI Corollary 2.8. If B,C B(H ), then for p 1 ∈ ≥ wp(B,C) 2p1−1max w(B),w(C) . (2.3) ≥ { } In addition, if A = B +iC is the Cartesian decomposition of A, then for p 2 ≥ w(A) 2p1−2max( A+A∗ , A A∗ ). ≥ k k k − k Proof. By inequality (2.2) and properties of the numerical radius, we have 2wp(B,C) 2p1−1(w(B +C)+w(B C)) 2p1−1w(B +C +B C). ≥ − ≥ − So wp(B,C) 2p1−1w(B). ≥ By symmetry we conclude that wp(B,C) 2p1−1max(w(B),w(C)). ≥ (cid:3) While the second inequality follows easily from inequality (2.1). Now we apply part (b) of Lemma 2.3 to find some lower and upper bounds for w (p > 1). p Proposition 2.9. Let B,C B(H ). Then for all p 2, ∈ ≥ (i) 2p1−1wp(B +C,B C) wp(B,C) 2−p1wp(B +C,B C); − ≤ ≤ − (ii) 2p1−1 wp(B+C)+wp(B C) p1 wp(B,C) 2−p1 wp(B+C)+wp(B C) p1. − ≤ ≤ − If 1 < p 2 these inequalities hold in the opposite direction. (cid:0) (cid:1) (cid:0) (cid:1) ≤ Proof. Let x H be a unit vector. Part (b) of Lemma 2.3 implies that for any ∈ p 2 ≥ 1 21−p( a+b p + a b p) a p + b p ( a+b p + a b p). | | | − | ≤ | | | | ≤ 2 | | | − | Replacing a = Bx,x and b = Cx,x in above inequalities we obtain the desired |h i| |h i| (cid:3) inequalities. Remark 2.10. In inequality (2.3), if we take B +C and B C instead of B and − C, then for p 1 ≥ wp(B +C,B C) 2p1−1max w(B +C),w(B C) . − ≥ { − } By employing the first inequality of part (i) of Proposition 2.9, we get wp(B,C) 2p2−2max w(B +C),w(B C) ≥ { − } EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES 7 for p 1. ≥ Taking B +C and B C instead of B and C in the second inequality of part (ii) − of Proposition 2.9, we reach wp(B +C,B C) 21−p1 (wp(B)+wp(C))p1 . − ≤ for all p 1. ≥ Now by applying the second inequality of part (i) of Proposition 2.9, we infer for p 1 that ≥ wp(B,C) 21−p2 (wp(B)+wp(C))1p . ≤ So 2p2−2max w(B +C),w(B C) wp(B,C) 21−p2 (wp(B)+wp(C))1p . { − } ≤ ≤ Moreover if B and C are self-adjoint, then 2p2−2max B +C , B C wp(B,C) 21−p2 ( B p + C p)p1 {k k k − k} ≤ ≤ k k k k for all p 1. ≥ In the following result we find another lower bound for w (p 1). p ≥ Theorem 2.11. Let B,C B(H ). Then for p 1 ∈ ≥ wp(B,C) 2p1−1w21(B2 +C2). ≥ Proof. It follows from (2.2) that 2p2−2w2(B C) w2(B,C). ± ≤ p Hence 2w2(B,C) 2p2−2 w2(B +C)+w2(B C) p ≥ − 2p2−2(cid:2)w (B +C)2 +w (B (cid:3)C)2 ≥ − 2p2−2(cid:2)w(cid:0)(B +C)2(cid:1)+(B(cid:0) C)2 =(cid:1)2(cid:3)p2−1w(B2 +C2). ≥ − (cid:2) (cid:0) (cid:1)(cid:3) It follows that wp(B,C) 2p1−1w21(B2 +C2). ≥ (cid:3) 8 M.S. MOSLEHIAN,M. SATTARI,K. SHEBRAWI Corollary 2.12. If A = B +iC is the Cartesian decomposition of A , then wp(B,C) 2p1−1 B2 +C2 12. ≥ k k And w(A) 2p1−23 A∗A+AA∗ 12. ≥ k k for any p 2. ≥ Proof. The first inequality is obvious. For the second we have A∗A+AA∗ = 2(B2+ C2). Now by using inequality (2.1) the proof is complete. (cid:3) Corollary 2.13. If B,C B(H ), then for p 2 ∈ ≥ wp(B,C) 2p2−23w21 B2 +C2 . ≥ (cid:0) (cid:1) Proof. By choosing B + C and B C instead of B and C in Theorem 2.11 and − (cid:3) employing part (i) of Proposition 2.9 we conclude that the desired inequality. The following result providing other bound for w (p > 1) may be stated as p follows: Proposition 2.14. Let B,C B(H ). Then ∈ B +C B C w (B,C) w , − . p q ≤ 2 2 (cid:18) (cid:19) for any p 2,1 < q 2 with 1 + 1 = 1. If 1 < p 2, the reverse inequality holds. ≥ ≤ p q ≤ Proof. Let x H be a unit vector. Part (a) of Lemma 2.3 implies that ∈ a p + b p 21−1q ( a+b q + a b q)q−11 . | | | | ≤ | | | − | So ( a p + b p)p1 2p(11−q) ( a+b q + a b q)p(q1−1) . | | | | ≤ | | | − | Now replacing a = Bx,x and b = Cx,x in the above inequality we conclude that h i h i ( Bx,x p + Cx,x p)p1 B +C x,x q + B−C x,x q q1 . (2.4) |h i| |h i| ≤ 2 2 (cid:18)(cid:12)(cid:28)(cid:18) (cid:19) (cid:29)(cid:12) (cid:12)(cid:28)(cid:18) (cid:19) (cid:29)(cid:12) (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) By taking supremum over x (cid:12)H with x = 1(cid:12)we d(cid:12)educe that (cid:12) ∈(cid:12) k k (cid:12) (cid:12) (cid:12) B +C B C w (B,C) w , − p q ≤ 2 2 (cid:18) (cid:19) for any p 2,1 < q 2 with 1 + 1 = 1. (cid:3) ≥ ≤ p q EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES 9 Corollary 2.15. Inequality (2.4) implies that 1 B +C B C q w (B,C) wq +wq − . p ≤ 2 2 (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) for any 1 < q 2,p 2 with 1 + 1 = 1. Further, if Band C are self-adjoint, then ≤ ≥ p q 1 w (B,C) ( B +C q + B C q)1q . p ≤ 2 k k k − k If 1 < p 2, the converse inequalities hold. ≤ Corollary 2.16. If B,C B(H ), then ∈ B +C B C B +C B C 1 wq , − 2pwp , − . 2 2 ≤ 2 2 (cid:18) (cid:19) (cid:18) (cid:19) for all 1 < p 2 with 1 + 1 = 1. If p 2, the above inequality is valid in the ≤ p q ≥ opposite direction. Proof. By Proposition 2.14 we have B +C B C w , − w (B,C). q p 2 2 ≤ (cid:18) (cid:19) for all 1 < p 2 with 1 + 1 = 1. Proposition 2.9 follows that ≤ p q B +C B C wp(B,C) 2p1−1wp(B +C,B C) = 2p1wp , − . ≤ − 2 2 (cid:18) (cid:19) (cid:3) We therefore get the desired inequality. 3. Inequalities of w for n-tuples of operators p In this section, we are going to obtain some numerical radius inequalities for n- tuples of operators. Some generalization of inequalities in the previous section are also established. According to the definition of numerical radius, we immediately get the following double inequality for p 1 ≥ 1 n p n w (T ,...,T ) wp(T ) w(T ). p 1 n i i ≤ ≤ ! i=1 i=1 X X An application of Holder’s inequality gives the next result, which is a generalization of inequality (2.2). 10 M.S. MOSLEHIAN,M. SATTARI,K. SHEBRAWI Theorem 3.1. Let (T ,...,T ) B(H )(n) and 0 α 1, i = 1,...n, with 1 n i n ∈ ≤ ≤ α = 1. Then i i=1 P 1−1 1−1 1−1 w (T ,...,T ) w α pT α pT ... α pT p 1 n ≥ 1 1 ± 2 2 ± ± n n (cid:18) (cid:19) for any p > 1. Proof. In the Euclidean space Rn with the standard inner product, Holder’s inequal- ity 1 1 n n p n q x y x p y q i i i i | | ≤ | | | | ! ! i=1 i=1 i=1 X X X holds, where p and q are in the open interval (1, ) with 1+1 = 1 and (x ,...,x ), ∞ p q 1 n (y ,...,y ) Rn. For (y ,...,y ) = α1−p1,...,α1−p1 we have 1 n ∈ 1 n 1 n (cid:18) (cid:19) 1 1 n n p n q q α1−p1x x p α1−p1 . i i ≤ | i| i ! ! i=1 (cid:12) (cid:12) i=1 i=1 (cid:12) (cid:12) X(cid:12) (cid:12) X X(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Thus (cid:12) (cid:12) (cid:12) (cid:12) 1 n p n x p α1−p1x . | i| ≥ i i ! i=1 i=1 (cid:12) (cid:12) X X(cid:12) (cid:12) Choosing x = T x,x ,i = 1,...n, we get (cid:12) (cid:12) i i (cid:12) (cid:12) |h i| 1 n p T x,x p i |h i| ! i=1 X n 1−1 α pT x,x ≥ i i i=1 (cid:12)(cid:28) (cid:29)(cid:12) X(cid:12) (cid:12) (cid:12)1−1 (cid:12) 1−1 1−1 α(cid:12) pT x,x (cid:12)α pT x,x ... α pT x,x ≥ 1 1 ± 2 2 ± ± n n (cid:12)(cid:28) (cid:29) (cid:28) (cid:29) (cid:28) (cid:29)(cid:12) (cid:12) (cid:12) (cid:12) 1−1 1−1 1−1 (cid:12) = (cid:12) α1 pT1 ±α2 pT2 ±...±αn pTn x,x . (cid:12) (cid:12)(cid:28)(cid:18) (cid:19) (cid:29)(cid:12) (cid:12) (cid:12) Now the result(cid:12)follows by taking the supremum over all unit(cid:12) vectors in H . (cid:3) (cid:12) (cid:12) Now we give another upper bound for the powers of w . This result has several p inequalities as special cases, which considerably generalize the second inequality of (1.1).

See more

The list of books you might like