Logout succeed
Logout succeed. See you again!

Finite Precision Arithmetic and Aerosp PDF
Preview Finite Precision Arithmetic and Aerosp
IMT Institute for Advanced Studies, Lucca Lucca, Italy Embedded Model Predictive Control: Finite Precision Arithmetic and Aerospace Applications PhDPrograminComputerScienceandEngineering XXVII Cycle by Alberto Guiggiani 2015 ThedissertationofAlbertoGuiggianihasbeenapproved. ProgramCoordinator:Prof.AlbertoBemporad, IMTInstituteforAdvancedStudies,Lucca(IT). Advisor:Prof.AlbertoBemporad, IMTInstituteforAdvancedStudies,Lucca(IT). Co-advisor:Prof.PanagiotisPatrinos, IMTInstituteforAdvancedStudies,Lucca(IT). Co-advisor:Prof.IlyaKolmanovsky, UniversityofMichigan,AnnArbor,MI(US). ThedissertationofAlbertoGuiggiani hasbeenreviewedby: Prof.IonNecoara, UniversityPolitehnicaofBucharest(RO). Dr.SamirBennani, EuropeanSpaceAgency(ESA). IMT Institute for Advanced Studies, Lucca 2015 allamiafamiglia Table of Contents Page ListofFigures xiii ListofTables xvii Acknowledgements xix VitaandPublications xxi Abstract xxv NotationandAbbreviations xxvii 1 Introduction 1 1.1 ModelPredictiveControl . . . . . . . . . . . . . . . 2 1.1.1 LinearTrackingFormulation . . . . . . . . . 5 1.1.2 Extensions . . . . . . . . . . . . . . . . . . . . 8 1.2 QuadraticProgrammingforModelPredictiveControl 12 1.2.1 LagrangianDuality . . . . . . . . . . . . . . . 14 1.2.2 Methods . . . . . . . . . . . . . . . . . . . . . 15 vii 1.2.3 FromModelPredictiveControltoQuadratic Programming . . . . . . . . . . . . . . . . . . 21 1.3 Fixed-PointComputations . . . . . . . . . . . . . . . 24 1.3.1 OverflowErrors . . . . . . . . . . . . . . . . . 27 1.3.2 Round-offErrors . . . . . . . . . . . . . . . . 28 1.3.3 ErrorsduetoMathematicalOperations . . . 29 1.4 EmbeddedModelPredictiveControl . . . . . . . . . 30 1.5 Offset-FreeModelPredictiveControl . . . . . . . . . 33 1.5.1 Methods for Offset-Free Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . 33 1.5.2 Simulation . . . . . . . . . . . . . . . . . . . . 41 1.6 ModelPredictiveControlforAerospaceApplications 46 1.7 MotivationandContribution . . . . . . . . . . . . . 48 2 Gradient Projection Methods in Finite Precision Arith- metic 57 2.1 InexactGradientProjection . . . . . . . . . . . . . . 58 2.2 InexactDualGradientProjection . . . . . . . . . . . 64 2.2.1 ModifiedPrimal-DualPair . . . . . . . . . . 66 2.2.2 InexactOracle . . . . . . . . . . . . . . . . . . 68 2.2.3 PrimalConvergenceRates . . . . . . . . . . . 70 2.2.4 OptimalChoiceof α forFixedOracleErrors (cid:15) , (cid:15) . . . . . . . . . . . . . . . . . . . . . . . 76 z ξ 2.2.5 BoundoftheNumberofIterations . . . . . . 76 2.2.6 MaximumAdmissibleOracleErrors (cid:15) , (cid:15) . 78 z ξ 2.3 Fixed-PointDualGradientProjectionforQuadratic Programs . . . . . . . . . . . . . . . . . . . . . . . . . 81 viii 2.3.1 Fixed-pointImplementation . . . . . . . . . . 82 2.3.2 GuidelinesfortheNumberofFractionalBits 83 2.3.3 GuidelinesfortheNumberofIntegerBits . . 85 2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . 87 2.4.1 SampleEvolutions . . . . . . . . . . . . . . . 87 2.4.2 InfeasibilityandSuboptimalityBounds . . . 90 2.4.3 TargetInfeasibility . . . . . . . . . . . . . . . 92 2.4.4 BoundsonIterationCount . . . . . . . . . . 95 2.4.5 MassesSeriallyConnectedExample . . . . . 97 3 ProximalNewtonMethodsinFinitePrecisionArithmetic101 3.1 ProblemSetup . . . . . . . . . . . . . . . . . . . . . . 102 3.2 ProximalNewtonAlgorithm . . . . . . . . . . . . . 104 3.3 Fixed-PointProximalNewtonAlgorithm . . . . . . 107 3.3.1 Round-offErrorAnalysis . . . . . . . . . . . 107 3.3.2 AvoidingOverflowErrors . . . . . . . . . . . 108 3.4 OptimizationoftheAlgorithm . . . . . . . . . . . . 110 3.4.1 Preconditioning . . . . . . . . . . . . . . . . . 110 3.4.2 Division-freeComputations . . . . . . . . . . 113 3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . 115 3.5.1 ComputationalComplexity . . . . . . . . . . 115 3.5.2 SolutionAccuracy . . . . . . . . . . . . . . . 119 3.5.3 ControlofaF16AircraftExample . . . . . . 121 4 ExperimentalTests 125 4.1 EmbeddedOptimizationonARMCortex . . . . . . 126 4.1.1 TheARMCortex-M3ProcessingUnit . . . . 126 ix 4.1.2 GradientProjectionMethodsonARMCortex 127 4.1.3 ProximalNewtonMethodsonARMCortex . 130 4.2 EmbeddedOptimizationonFPGA . . . . . . . . . . 134 4.2.1 IntroductiontoFPGADevices . . . . . . . . 134 4.2.2 Fixed-PointDualGradientProjectiononFPGA138 5 AerospaceApplications 147 5.1 SpacecraftNonlinearModel . . . . . . . . . . . . . . 148 5.2 ControlObjective . . . . . . . . . . . . . . . . . . . . 150 5.3 ControlModel . . . . . . . . . . . . . . . . . . . . . . 152 5.4 MPCFormulation . . . . . . . . . . . . . . . . . . . . 154 5.5 ComputationalComplexity . . . . . . . . . . . . . . 161 5.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . 163 5.6.1 SinusoidalReferencesTracking . . . . . . . . 163 5.6.2 Rest-to-RestOrientationManeuver . . . . . . 166 5.6.3 Fixed-PointAccuracy . . . . . . . . . . . . . . 168 5.7 ReactionWheelsDesaturationbyGravityGradients 170 5.7.1 Background . . . . . . . . . . . . . . . . . . . 170 5.7.2 NonlinearModel . . . . . . . . . . . . . . . . 170 5.7.3 ControlModel . . . . . . . . . . . . . . . . . 172 5.7.4 SimulationResults . . . . . . . . . . . . . . . 173 5.7.5 ComparisonwithLQR . . . . . . . . . . . . . 176 5.8 ReactionWheelsDesaturationbyMagneticMoments 178 5.8.1 Background . . . . . . . . . . . . . . . . . . . 178 5.8.2 NonlinearModel . . . . . . . . . . . . . . . . 179 5.8.3 ControlModel . . . . . . . . . . . . . . . . . 180 5.8.4 SimulationResults . . . . . . . . . . . . . . . 182 x