loading

Logout succeed

Logout succeed. See you again!

ebook img

Fluid Mechanics PDF

pages784 Pages
release year2004
file size6.38 MB
languageEnglish

Preview Fluid Mechanics

Fluid Mechanics, Third Edition Founders of Modern Fluid Dynamics LudwigPrandtl G.I.Taylor (1875–1953) (1886–1975) (BiographicalsketchesofPrandtlandTayloraregiveninAppendixC.) PhotographofLudwigPrandtlisreprintedwithpermissionfromtheAnnualReviewofFluid Mechanics,Vol.19,Copyright1987byAnnualReviewswww.AnnualReviews.org. PhotographofGeoffreyIngramTayloratage69inhislaboratoryreprintedwithpermission fromtheAIPEmilioSegre`VisualArchieves.Copyright,AmericanInstituteofPhysics,2000. Fluid Mechanics Third Edition Pijush K. Kundu OceanographicCenter NovaUniversity Dania,Florida Ira M. Cohen DepartmentofMechanicalEngineeringand AppliedMechanics UniversityofPennsylvania Philadelphia,Pennsylvania withachapteronComputationalFluidDynamicsbyHowardH.Hu AMSTERDAM (cid:1) BOSTON (cid:1) HEIDELBERG (cid:1) LONDON NEW YORK (cid:1) OXFORD (cid:1) PARIS (cid:1) SAN DIEGO SAN FRANCISCO (cid:1) SINGAPORE (cid:1) SYDNEY (cid:1) TOKYO ElsevierAcademicPress 525BStreet,Suite1900,SanDiego,California92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK Thisbookisprintedonacid-freepaper.(cid:1) ∞ Copyright©2004,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopy,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone:(+44)1865843830,fax:(+44)1865853333, e-mail:permissions@elsevier.com.uk.Youmayalsocompleteyourrequeston-linevia theElsevierhomepage(http://elsevier.com),byselecting“CustomerSupport” andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData AcataloguerecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN 0-12-178253-0 ForallinformationonallAcademicPresspublications visitourWebsiteatwww.academicpress.com PrintedintheUnitedStatesofAmerica 04 05 06 07 08 9 8 7 6 5 4 3 2 1 ThethirdeditionisdedicatedtothememoryofPijushK.Kunduandalsotomywife LindaanddaughtersSusanandNancywhohavegreatlyenrichedmylife. “Everythingshouldbemadeassimpleaspossible, butnotsimpler.” —AlbertEinstein “Ifnaturewerenotbeautiful,itwouldnotbeworthstudyingit. Andlifewouldnotbeworthliving.” —HenryPoincare´ In memory of Pijush Kundu Pijush Kanti Kundu was born in Calcutta, India, on October 31, 1941. He received a B.S. degree in Mechanical Engineering in 1963 from Shibpur Engineering College of Calcutta University, earned an M.S. degree in Engineering from Roorkee University in 1965,andwasalecturerinMechanicalEngi- neeringattheIndianInstituteofTechnology in Delhi from 1965 to 1968. Pijush came to the United States in 1968, as a doctoral stu- dent at Penn State University.With Dr. John L.Lumleyashisadvisor,hestudiedinstabili- tiesofviscoelasticfluids,receivinghisdoctor- atein1972.Hebeganhislifelonginterestin oceanographysoonafterhisgraduation,workingasResearchAssociateinOceanog- raphyatOregonStateUniversityfrom1968until1972.Afterspendingayearatthe UniversitydeOrienteinVenezuela,hejoinedthefacultyoftheOceanographicCenter ofNovaSoutheasternUniversity,whereheremaineduntilhisdeathin1994. Duringhiscareer,Pijushcontributedtoanumberofsub-disciplinesinphysical oceanography,mostnotablyinthefieldsofcoastaldynamics,mixed-layerphysics, internal waves, and Indian-Ocean dynamics. He was a skilled data analyst, and, in thisregard,oneofhisaccomplishmentswastointroducethe“empiricalorthogonal eigenfunction”statisticaltechniquetotheoceanographiccommunity. IarrivedatNovaSoutheasternUniversityshortlyafterPijush,andheandIworked closelytogetherthereafter.Iwasimmediatelyimpressedwiththeclarityofhisscien- tificthinkingandhisthoroughness.Hismostimpressiveandobviousquality,though, was his love of science, which pervaded all his activities. Some time after we met, Pijush opened a drawer in a desk in his home office, showing me drafts of several chapters to a book he had always wanted to write.A decade later, this manuscript becamethefirsteditionof“FluidMechanics,”theculminationofhislifelongdream; which he dedicated to the memory of his mother, and to his wife Shikha, daughter Tonushree,andsonJoydip. JulianP.McCreary,Jr., UniversityofHawaii Contents Preface ................................................... xvii PrefacetoSecondEdition ................................. xviii PrefacetoFirstEdition ..................................... xx Author’sNotes ........................................... xxiii Chapter 1 Introduction 1. FluidMechanics.............................................. 1 2. UnitsofMeasurement......................................... 2 3. Solids,Liquids,andGases..................................... 3 4. ContinuumHypothesis........................................ 4 5. TransportPhenomena......................................... 5 6. SurfaceTension .............................................. 8 7. FluidStatics ................................................. 9 8. ClassicalThermodynamics .................................... 12 9. PerfectGas .................................................. 16 10. StaticEquilibriumofaCompressibleMedium................... 17 Exercises .................................................... 22 LiteratureCited .............................................. 23 SupplementalReading ........................................ 23 Chapter 2 Cartesian Tensors 1. ScalarsandVectors ........................................... 24 2. RotationofAxes:FormalDefinitionofaVector.................. 25 vii viii Contents 3. MultiplicationofMatrices..................................... 28 4. Second-OrderTensor ......................................... 29 5. ContractionandMultiplication................................. 31 6. ForceonaSurface............................................ 32 7. KroneckerDeltaandAlternatingTensor......................... 35 8. DotProduct.................................................. 36 9. CrossProduct ................................................ 36 10. Operator :Gradient,Divergence,andCurl..................... 37 ∇ 11. SymmetricandAntisymmetricTensors ......................... 38 12. EigenvaluesandEigenvectorsofaSymmetricTensor............. 40 13. Gauss’Theorem.............................................. 42 14. Stokes’Theorem.............................................. 45 15. CommaNotation ............................................. 46 16. BoldfacevsIndicialNotation .................................. 47 Exercises .................................................... 47 LiteratureCited .............................................. 49 SupplementalReading ........................................ 49 Chapter 3 Kinematics 1. Introduction.................................................. 50 2. LagrangianandEulerianSpecifications ......................... 51 3. EulerianandLagrangianDescriptions:TheParticleDerivative .... 53 4. Streamline,PathLine,andStreakLine.......................... 54 5. ReferenceFrameandStreamlinePattern ........................ 56 6. LinearStrainRate ............................................ 57 7. ShearStrainRate............................................. 58 8. VorticityandCirculation ...................................... 59 9. RelativeMotionnearaPoint:PrincipalAxes .................... 61 10. KinematicConsiderationsofParallelShearFlows................ 64 11. KinematicConsiderationsofVortexFlows ...................... 65 12. One-,Two-,andThree-DimensionalFlows...................... 68 13. TheStreamfunction........................................... 69 14. PolarCoordinates............................................. 72 Exercises .................................................... 73 SupplementalReading ........................................ 75 Contents ix Chapter 4 Conservation Laws 1. Introduction.................................................. 77 2. TimeDerivativesofVolumeIntegrals........................... 77 3. ConservationofMass......................................... 79 4. Streamfunctions:RevisitedandGeneralized..................... 81 5. OriginofForcesinFluid ...................................... 82 6. StressataPoint .............................................. 84 7. ConservationofMomentum ................................... 86 8. MomentumPrincipleforaFixedVolume........................ 88 9. AngularMomentumPrincipleforaFixedVolume................ 92 10. ConstitutiveEquationforNewtonianFluid ...................... 94 11. Navier–StokesEquation....................................... 97 12. RotatingFrame............................................... 99 13. MechanicalEnergyEquation .................................. 104 14. FirstLawofThermodynamics:ThermalEnergyEquation......... 108 15. SecondLawofThermodynamics:EntropyProduction............ 109 16. BernoulliEquation............................................ 110 17. ApplicationsofBernoulli’sEquation............................ 114 18. BoussinesqApproximation .................................... 117 19. BoundaryConditions ......................................... 121 Exercises .................................................... 126 LiteratureCited .............................................. 128 SupplementalReading ........................................ 128 Chapter 5 Vorticity Dynamics 1. Introduction.................................................. 129 2. VortexLinesandVortexTubes ................................. 130 3. RoleofViscosityinRotationalandIrrotationalVortices .......... 130 4. Kelvin’sCirculationTheorem.................................. 134 5. VorticityEquationinaNonrotatingFrame....................... 138 6. VelocityInducedbyaVortexFilament:LawofBiotandSavart. ... 140 7. VorticityEquationinaRotatingFrame.......................... 141 8. InteractionofVortices......................................... 146 9. VortexSheet ................................................. 149 Exercises .................................................... 150

See more

The list of books you might like