loading

Logout succeed

Logout succeed. See you again!

ebook img

Fooling Sets and the Spanning Tree Polytope PDF

file size0.09 MB

Preview Fooling Sets and the Spanning Tree Polytope

Fooling Sets and the Spanning Tree Polytope Kaveh Khoshkhah, Dirk Oliver Theis∗ InstituteofComputerScience UniversityofTartu ofthe U¨likooli17,51014Tartu,Estonia {kaveh.khoshkhah,dotheis}@ut.ee 7 Mon Jan 2 11:58:01 EET 2017 1 0 2 n a Abstract J Inthestudyofextensionsofpolytopesofcombinatorialoptimizationproblems,anotori- 2 ousopenquestionisthatforthesizeofthesmallestextendedformulationoftheMinimum SpanningTreeproblemonacompletegraphwithnnodes. Thebestknownlowerboundis ] M Ω(n2),thebestknownupperboundisO(n3). Inthisnoteweshowthatthevenerablefoolingsetmethod cannotbeusedtoimprove D thelowerbound:everyfoolingsetfortheSpanningTreepolytopehassizeO(n2). . s Keywords: Polyhedral Combinatorial Optimization, Extended Formulations, Lower c Bounds. [ 1 v 1 Introduction 0 5 ([n]) 3 The Spanning Tree polytope Pn has as its vertices the characteristic vectors R 2 of edge- setsoftreeswithnodeset[n]:={1,...,n}. Acompletesystemofinequalitiesandequations 0 0 isthefollowing: . 1 0 xe =n−1 7 e∈X([n]) 1 2 : x ≤|S|−1 ∀S ⊂[n], |S|>1 v e i eX∈(S) X 2 [n] r x ≥0 ∀e∈ . a e (cid:18) 2 (cid:19) Thissystemhasexponentiallymanyfacet-defininginequalities. Thereisaclassicalextended formulation by Wong/Martin [10, 13] with O(n3) inequalities (and variables). A notorious open problem in polyhedral combinatorial optimization, highlighted by M. Goemans at the 2010 Carge`se Workshop on Combinatorial Optimization, asks whether or not an extended formulationwith o(n3)inequalitiesexists. TheonlyknownlowerboundisΩ(n2)—this isa “trivial”lowerbound(itisthedimensionofthespanningtreepolytope). One method for proving lower bounds to sizes of extended formulations is the so-called fooling-set method (see, e.g., [9]). For that method, one looks at the function f which maps every pair of an inequality and a solution to 0, if the solution satisfies the inequality with equation,andotherwiseto1. A foolingsetofsize r isa list ofpairsF = (s1,t1),...,(sr,tr) (cid:0) (cid:1) ∗SupportedbytheEstonianResearchCouncil,ETAG(EestiTeadusagentuur),throughPUTExploratoryGrant #620,andbytheEuropeanRegionalDevelopmentFundthroughtheEstonianCenterofExcellenceinComputer Science,EXCS. 1 such that f(s ,t ) = 1 for j = 1,...,r, and f(s ,t )f(s ,t ) = 0 for i 6= j. If a fooling set of j j i j j i sizer exists,theneveryextendedformulationmustcontainatleastr inequalities. Itisaneasyfolklorefactthateverypolytopehasafoolingsetofwhosesizethedimension ofthepolytope. Butfoolingsetlowerboundshavetheirlimitations. Mostimportantly,there can never be a fooling set larger than the square of the dimension of the polytope ([5]; see also[2,11]). However,sincethatboundisknowntobetight[7,6],andthedimensionofthe spanningtreepolytopeisΩ(n2),afoolingsetboundofΩ(n3)fortheSpanningTreepolytope is possible. A small improvement was made in [12], where a O(n8/3logn) upper bound for thelargestpossiblefoolingsetfortheSpanningTreepolytopeisshown. Inthisnote,weprovethatthelargestsizeofafoolingsetintheSpanningTreepolytope isO(n2). Theorem1. FoolingsetsforthespanningtreepolytopehavesizeO(n2). Webelievethatourtoolsmaybe usefulforotherattemptstogiveupperboundson sizes offoolingsets. 2 Proof of Theorem 1 We start by making precise the function f. Since the number of nonnegativity inequalities “x ≥0”isO(n2),andweaimforanO(n2)upperbound,wecanomitthem. Wedefine e S := S ([n] |S|>1 n (cid:12) o [n(cid:12)] T := T ⊂ (cid:12) T tree . n (cid:18) 2 (cid:19)(cid:12) o (cid:12) (cid:12) Thefunctionf isnowthefollowing: 0, ifthesub-forestofT inducedbyS isatree, f: S ×T : (S,T)7→ i.e.,T ∩ S isconnected;  2 1, otherwis(cid:0)e.(cid:1)  Weusetheterminology“S isconnectedinT”forthecasef(S,T)=0. NowletF = (S1,T1)...,(Sr,Tr) beafoolingsetofsizerforf. Wedefinean(r×r)-matrix H byHi,j :=f(S(cid:0)i,Tj). Wewillprove(cid:1)thefollowing. Lemma2(MainLemma). EverycolumnofH hasatmostn(n−1)zeroentries. TheMainLemmaimmediatelyimpliesTheorem1. ProofofTheorem1fromLemma2. ThatF isafoolingsetmeansthatH (has1sonthediag- onal, and)in each pair ofdiagonallyoppositeoff-diagonalentries, atleast oneis zero. So H hasatleastΩ(r2)zeroentries. ButtheMainLemmaimpliesthatH hasatmostO(rn2)zero entries. Intheremainderofthesection,wewillprovetheMainLemma. Westartwiththefundamentaldefinitionoftheproof. Definition 3 (Witness). Let S ∈ S, T ∈ T. A witness for f(S,T) = 1 is a triple (a,x,b) of nodeswhichsatisfies (a) a,b∈S,x∈/ S;and (b) xliesonthe(unique)pathinT betweenaandb. 2 Let us justify the terminology. Clearly, if a witness exists, S cannot be connected in T, andhencef(S,T)=1. Ontheotherhand,iff(S,T)=1,i.e.,thesub-forestofT inducedbyS has multiple connected components, then there is a node x ∈/ S with the property that for everya ∈ S thereis ab ∈ S such thatx lieson thepath in T betweena andb. (To findsuch anxshrinktheconnectedcomponentsto“supernodes”,andletxbe any(non-shrunk)node on a path between two “super nodes”.) Hence, a witness for f(S,T) = 1 exists if and only if f(S,T)=1. Clearly,if(a,x,b)isanwitnessforf(S,T)=1,thensois(b,x,a). Lemma4. If(a,x,b)isawitnessforbothf(S ,T )=1andf(S ,T )=1theni=j. i i j j Proof. If(a,x,b)isawitnessforbothf(S ,T )=1andf(S ,T )=1,thenitisalsoawitness i i j j for both f(S ,T ) = 1 and f(S ,T ) = 1. But since F is a foolingset, this can only happen if i j j i i=j. Lemma 5. Let S ∈ S, T ∈ T, and a,b,c ∈ S. If at least one of (a,x,b), (b,x,c), (c,x,a) is a witnessforf(S,T)=1,thenatleasttwoofthemare. Proof. Condition (a) of Definition 3 is satisfied by either none or all of the triples. As for Condition (b), if say, x were on the path between a and b in T, but x was neither on the pathbetweenbandcnoronthepathbetweencanda,thenT wouldhavetwodistinctpaths betweenaandb,onethroughxandoneavoidingx—acontradiction. Lemma 6. LetS ∈ S, T,T′ ∈ T,andx ∈ [n] suchthatW 6= ∅andS is connectedinT′. x,S,T Thenthereisanedge{a,b}∈T′∩ S with(a,x,b)∈W . 2 x,S,T (cid:0) (cid:1) Proof. ConsiderthetreeQwithnodesetS andedgesetT′∩ S . Amongallpairs{a,b}with 2 (a,x,b) ∈ Wx,S,T take oneforwhichthedistance betweena a(cid:0)nd(cid:1)bin Qisminimal. Weclaim that{a,b}∈ Q. Indeed,byLemma5,iftherewasaconthepath inQbetweenaandbwith c∈/ {a,b},thenforatleastoneof{a,c}or{c,b}thecorrespondingtripletwithxinthemiddle isinW ,andthedistanceinQisshorter. x,S,T Foreveryx∈[n](anode)andk ∈[r](acolumnofH),denotebyZ thesetofi∈[r](rows x,k ofH)forwhich • S isconnectedinT ;and i k • thereexista,b∈S suchthat(a,x,b)isawitnessforf(S ,T )=1. i i i Lemma7. Foreveryx∈[n]andk ∈[r],wehave|Z |≤n−1. x,k Proof. For each i ∈ Z , by Lemma 6, there is an edge {a ,b } ∈ T such that (a,x,b) ∈ x,k i i k W . x,Si,Ti ByLemma4,theedges{a ,b },i∈Z ,aredistinct. Hence|Z |≤n−1. i i x,k x,k TheproofoftheMainLemmaisnowalmostcomplete. ProofofLemma2. Letk ∈[r]betheindexofacolumnofH. Foreveryi∈[r]withf(S ,T )= i k 0, there is an x such that i ∈ Z . Hence the number of zero-entriesin that column of H is x,k atmost n |Z |, x,k xX=1 which,byLemma7isatmostn(n−1). 3 3 Conclusion and Outlook We have settled the question whether the fooling set method can be used to prove a non- trivial lower bound for the extension complexity (i.e., smallest number of inequality in an extended formulation) of the Spanning Tree polytope. There are two more, stronger, com- binatorial lower bounds which are frequently used: the rectangle covering number and the fractionalrectanglecoveringnumber. Thenextstepwouldbetofindoutifanyofthesegrow more quickly than n2. In summary, though, despite the interest in the problem (e.g., [1, 8]) andpartialresultsandapproaches(e.g.,[3,4]),theproblemisnowmoreopenthanever. Acknowledgments This research was supported by the Estonian Research Council, ETAG (Eesti Teadusagen- tuur),throughPUTExploratoryGrant#620. Wealsogratefullyacknowledgefundingbythe European Regional DevelopmentFund through the Estonian Center of Excellence in Com- puterScience,EXCS. References [1] LeRoy B. Beasley, Hartmut Klauck, Troy Lee, and Dirk Oliver Theis. Communication complexity,linearoptimization,andlowerboundsforthenonnegativerankofmatrices (DagstuhlSeminar13082). DagstuhlReports,3(2):127–143,2013. [2] Martin Dietzfelbinger, Juraj Hromkovicˇ, and Georg Schnitger. A comparison of two lower-boundmethodsforcommunicationcomplexity. Theoret.Comput.Sci.,168(1):39– 51, 1996. 19th International Symposium on Mathematical Foundations of Computer Science(Kosˇice,1994). [3] Yuri Faenza, Samuel Fiorini, Roland Grappe, and Hans Raj Tiwary. Extended formu- lations,nonnegativefactorizations,andrandomizedcommunicationprotocols. InInter- nationalSymposiumonCombinatorialOptimization,pages129–140.Springer,2012. [4] Samuel Fiorini, Tony Huynh, Gwenae¨l Joret, and Kanstantsin Pashkovich. Smaller extended formulations for the spanning tree polytope of bounded-genusgraphs. arXiv preprintarXiv:1604.07976,2016. [5] Samuel Fiorini, Volker Kaibel, Kanstantin Pashkovich, and Dirk Oliver Theis. Com- binatorial bounds on nonnegative rank and extended formulations. DiscreteMath., 313(1):67–83,2013. [6] Mirjam Friesen, Aya Hamed, Troy Lee, and Dirk Oliver Theis. Fooling-sets and rank. EuropeanJournalofCombinatorics,48:143–153,2015. [7] MirjamFriesenandDirkOliverTheis. Fooling-setsandrankinnonzerocharacteristic. In Jaroslav Nesˇetrˇil and Marco Pellegrini, editors, TheSeventhEuropeanConference onCombinatorics,GraphTheoryandApplications, volume 16 of CRMseries, pages 383–390.CRM,2013. [8] Hartmut Klauck, Troy Lee, Dirk Oliver Theis, and Rekha R Thomas. Limitations of convex programming: lower bounds on extended formulations and factorization ranks (DagstuhlSeminar15082). DagstuhlReports,5(2):109–127,2015. [9] EyalKushilevitzandNoamNisan. Communicationcomplexity. CambridgeUniversity Press,Cambridge,1997. [10] R.KippMartin. Usingseparationalgorithmstogeneratemixedintegermodelreformu- lations. OperationsResearchLetters,10(3):119–128,1991. 4 [11] MozhganPourmoradnasserandDirkOliverTheis. The(minimum)rankoftypicalfool- ingsetmatrices(preprint). arXiv:1608.07038,2016. [12] Stefan Welte. SizesofDescriptionsinLinearOptimization. PhD thesis, University of Marburg,2016. [13] RichardTWong. Integerprogrammingformulationsofthetravelingsalesmanproblem. In ProceedingsoftheIEEEinternationalconferenceofcircuitsandcomputers, pages 149–152.IEEEPressPiscataway,NJ,1980. 5

See more

The list of books you might like