Logout succeed
Logout succeed. See you again!

Fundamentals Of Communication Systems Solution Manual PDF
Preview Fundamentals Of Communication Systems Solution Manual
Solution Manual Fundamentals of Communication Systems John G. Proakis Masoud Salehi Second Edition 2013 Chapter 2 Problem 2.1 (cid:16) (cid:16) (cid:17)(cid:17) 1. Π(2t+5)=Π 2 t+ 5 . ThisindicatesfirstwehavetoplotΠ(2t)andthenshiftittoleftby 2 5. Aplotisshownbelow: 2 Π(2t+5) (cid:54) 1 (cid:45) t −11 −9 4 4 2. (cid:80)∞ Λ(t−n)isasumofshiftedtriangularpulses. Notethatthesumoftheleftandrightside n=0 oftriangularpulsesthataredisplacedbyoneunitoftimeisequalto1,Theplotisgivenbelow x (t) ✻2 1 ✲ t −1 3. Itisobviousfromthedefinitionofsgn(t)thatsgn(2t)=sgn(t). Thereforex (t)=0. 3 4. x (t)issinc(t)contractedbyafactorof10. 4 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 3 Problem 2.2 1. x[n]=sinc(3n/9)=sinc(n/3). 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −20 −15 −10 −5 0 5 10 15 20 (cid:18) (cid:19) 2. x[n]=Π n4−1 . If−1 ≤ n4−1 ≤ 1,i.e.,−2≤n≤10,wehavex[n]=1. 3 2 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −20 −15 −10 −5 0 5 10 15 20 3. x[n]= n4u−1(n/4)−(n4 −1)u−1(n/4−1). Forn<0,x[n]=0,for0≤n≤3,x[n]= n4 and forn≥4,x[n]= n − n +1=1. 4 4 4 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −5 0 5 10 15 20 Problem 2.3 x [n] = 1 and x [n] = cos(2πn) = 1, for all n. This shows that two signals can be different but 1 2 theirsampledversionsbethesame. Problem 2.4 Let x [n] and x [n] be two periodic signals with periods N and N , respectively, and let N = 1 2 1 2 LCM(N ,N ),anddefinex[n]=x [n]+x [n]. Thenobviouslyx [n+N]=x [n]andx [n+N]= 1 2 1 2 1 1 2 x [n],andhencex[n]=x[n+N],i.e.,x[n]isperiodicwithperiodN. 2 Forcontinuous-timesignalsx (t)andx (t)withperiodsT andT respectively,ingeneralwe 1 2 1 2 cannot find a T such that T = k T = k T for integers k and k . This is obvious for instance if 1 1 2 2 1 2 T =1andT =π. Thenecessaryandsufficientconditionforthesumtobeperiodicisthat T1 bea 1 2 T2 rationalnumber. Problem 2.5 Usingtheresultofproblem2.4wehave: 1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational,hencethesumisperiodic. 2. Thefrequenciesare2000and 5500. Theirratioisnotrational,hencethesumisnotperiodic. π 3. Thesumoftwoperiodicdiscrete-timesignalisperiodic. 4. The fist signal is periodic but cos[11000n] is not periodic, since there is no N such that cos[11000(n+N)]=cos(11000n)foralln. Thereforethesumcannotbeperiodic. 5 Problem 2.6 1) e−t t >0 −e−t t >0 x1(t)= −et t <0 (cid:61)⇒x1(−t)= et t <0 =−x1(t) 0 t =0 0 t =0 Thus,x (t)isanoddsignal 1 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) 2)x (t)=cos 120πt+ π isneitherevennorodd. Wehavecos 120πt+ π =cos π cos(120πt)− 2 3 3 3 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) sin π sin(120πt). Therefore x (t) = cos π cos(120πt) and x (t) = −sin π sin(120πt). 3 2e 3 2o 3 (Note: Thispartcanalsobeconsideredasaspecialcaseofpart7ofthisproblem) 3) x (t)=e−|t| (cid:61)⇒x (−t)=e−|(−t)| =e−|t| =x (t) 3 3 3 Hence,thesignalx (t)iseven. 3 4) t t ≥0 0 t ≥0 x (t)= (cid:61)⇒x (−t)= 4 4 0 t <0 −t t <0 Thesignalx (t)isneitherevennorodd. Theevenpartofthesignalis 4 x (t)+x (−t) t t ≥0 |t| x (t)= 4 4 = 2 = 4,e 2 −t t <0 2 2 Theoddpartis x (t)−x (−t) t t ≥0 t x (t)= 4 4 = 2 = 4,o 2 t t <0 2 2 5) x (t)=x (t)−x (t) (cid:61)⇒x (−t)=x (−t)−x (−t)=x (t)+x (t) 5 1 2 5 1 2 1 2 Clearly x (−t) ≠ x (t) since otherwise x (t) = 0 ∀t. Similarly x (−t) ≠ −x (t) since otherwise 5 5 2 5 5 x (t)=0∀t. Theevenandtheoddpartsofx (t)aregivenby 1 5 x (t)+x (−t) x (t) = 5 5 =x (t) 5,e 1 2 x (t)−x (−t) x (t) = 5 5 =−x (t) 5,o 2 2 6 Problem 2.7 (cid:82) ForthefirsttwoquestionswewillneedtheintegralI = eaxcos2xdx. (cid:90) (cid:90) 1 1 1 I = cos2x deax = eaxcos2x+ eaxsin2x dx a a a (cid:90) 1 1 = eaxcos2x+ sin2x deax a a2 (cid:90) 1 1 2 = eaxcos2x+ eaxsin2x− eaxcos2x dx a a2 a2 (cid:90) 1 1 2 = eaxcos2x+ eaxsin2x− eax(2cos2x−1)dx a a2 a2 (cid:90) 1 1 2 4 = eaxcos2x+ eaxsin2x− eax dx− I a a2 a2 a2 Thus, (cid:20) (cid:21) 1 2 I = (acos2x+sin2x)+ eax 4+a2 a 1) (cid:90) T (cid:90) T E = lim 2 x2(t)dx = lim 2 e−2tcos2tdt x T→∞ −T 1 T→∞ 0 2 (cid:12)T = lim 1(cid:104)(−2cos2t+sin2t)−1(cid:105)e−2t(cid:12)(cid:12)2 T→∞8 (cid:12)0 (cid:20) (cid:21) 1 T 3 = lim (−2cos2 +sinT −1)e−T +3 = T→∞8 2 8 Thusx (t)isanenergy-typesignalandtheenergycontentis3/8 1 2) (cid:90) T (cid:90) T E = lim 2 x2(t)dx = lim 2 e−2tcos2tdt x T→∞ −T 2 T→∞ −T 2 2 (cid:90)0 (cid:90) T = lim e−2tcos2tdt+ 2 e−2tcos2tdt T→∞ −T 0 2 But, lim (cid:90)0 e−2tcos2tdt = lim 1(cid:104)(−2cos2t+sin2t)−1(cid:105)e−2t(cid:12)(cid:12)(cid:12)0 T→∞ −T T→∞8 (cid:12)−T 2 2 (cid:20) (cid:21) 1 T = lim −3+(2cos2 +1+sinT)eT =∞ T→∞8 2 since2+cosθ+sinθ >0. Thus,E =∞sinceaswehaveseenfromthefirstquestionthesecond x integral is bounded. Hence, the signal x (t) is not an energy-type signal. To test if x (t) is a 2 2 power-typesignalwefindP . x P = lim 1 (cid:90)0 e−2tcos2dt+ lim 1 (cid:90) T2 e−2tcos2dt x T→∞T −T T→∞T 0 2 7 ButlimT→∞ T1 (cid:82)0T2 e−2tcos2dt iszeroand 1 (cid:90)0 1 (cid:20) T (cid:21) lim e−2tcos2dt = lim 2cos2 +1+sinT eT T→∞T −T T→∞8T 2 2 1 1 > lim eT > lim (1+T +T2)> lim T =∞ T→∞T T→∞T T→∞ Thusthesignalx (t)isnotapower-typesignal. 2 3) (cid:90) T (cid:90) T (cid:90) T E = lim 2 x2(t)dx = lim 2 sgn2(t)dt = lim 2 dt = lim T =∞ x T→∞ −T 3 T→∞ −T T→∞ −T T→∞ 2 2 2 (cid:90) T (cid:90) T P = lim 1 2 sgn2(t)dt = lim 1 2 dt = lim 1T =1 x T→∞T −T T→∞T −T T→∞T 2 2 Thesignalx (t)isofthepower-typeandthepowercontentis1. 3 4) Firstnotethat (cid:90) T2 (cid:88)∞ (cid:90)k+21f lim Acos(2πft)dt = A cos(2πft)dt =0 T→∞ −T k− 1 2 k=−∞ 2f sothat (cid:90) T (cid:90) T lim 2 A2cos2(2πft)dt = lim 1 2 (A2+A2cos(2π2ft))dt T→∞ −T T→∞2 −T 2 2 (cid:90) T = lim 1 2 A2dt = lim 1A2T =∞ T→∞2 −T T→∞2 2 (cid:90) T E = lim 2 (A2cos2(2πf t)+B2cos2(2πf t)+2ABcos(2πf t)cos(2πf t))dt x 1 2 1 2 T→∞ −T 2 (cid:90) T (cid:90) T = lim 2 A2cos2(2πf t)dt+ lim 2 B2cos2(2πf t)dt+ 1 2 T→∞ −T T→∞ −T 2 2 (cid:90) T AB lim 2 [cos2(2π(f +f )+cos2(2π(f −f )]dt 1 2 1 2 T→∞ −T 2 = ∞+∞+0=∞ Thusthesignalisnotoftheenergy-type. Totestifthesignalisofthepower-typeweconsidertwo casesf =f andf ≠f . Inthefirstcase 1 2 1 2 (cid:90) T P = lim 1 2 (A+B)2cos2(2πf )dt x 1 T→∞T −T 2 (cid:90) T = lim 1 (A+B)2 2 dt = 1(A+B)2 T→∞2T −T 2 2 8 Iff ≠f then 1 2 (cid:90) T P = lim 1 2 (A2cos2(2πf t)+B2cos2(2πf t)+2ABcos(2πf t)cos(2πf t))dt x 1 2 1 2 T→∞T −T 2 (cid:34) (cid:35) 1 A2T B2T A2 B2 = lim + = + T→∞T 2 2 2 2 Thusthesignalisofthepower-typeandiff =f thepowercontentis(A+B)2/2whereasiff ≠f 1 2 1 2 thepowercontentis 1(A2+B2) 2 Problem 2.8 1. Let x(t)=2Λ(cid:16)t(cid:17)−Λ(t), then x (t)=(cid:80)∞ x(t−4n). First we plot x(t) then by shifting 2 1 n=−∞ it by multiples of 4 we can plot x (t). x(t) is a triangular pulse of width 4 and height 2 1 fromwhichastandardtriangularpulseofwidth1andheight1issubtracted. Theresultisa trapezoidalpulse,whichwhenreplicatedatintervalsof4givestheplotofx (t). 1 x (t) ✻1 1 ✲ t −6 −2 2 6 2. This is the sum of two periodic signals with periods 2π and 1. Since the ratio of the two periodsisnotrationalthesumisnotperiodic(bytheresultofproblem2.4) 3. sin[n]isnotperiodic. ThereisnointegerN suchthatsin[n+N]=sin[n]foralln. Problem 2.9 1) Px = lim 1 (cid:90) T2 A2(cid:12)(cid:12)(cid:12)ej(2πf0t+θ)(cid:12)(cid:12)(cid:12)2dt = lim 1 (cid:90) T2 A2dt = lim 1A2T =A2 T→∞T −T T→∞T −T T→∞T 2 2 Thusx(t)=Aej(2πf0t+θ) isapower-typesignalanditspowercontentisA2. 2) P = lim 1 (cid:90) T2 A2cos2(2πf t+θ)dt = lim 1 (cid:90) T2 A2dt+ lim 1 (cid:90) T2 A2 cos(4πf t+2θ)dt x 0 0 T→∞T −T T→∞T −T 2 T→∞T −T 2 2 2 2 AsT →∞,thetherewillbenocontributionbythesecondintegral. Thusthesignalisapower-type signalanditspowercontentis A2. 2 9 3) (cid:90) T (cid:90) T P = lim 1 2 u2 (t)dt = lim 1 2 dt = lim 1 T = 1 x T→∞T −T −1 T→∞T 0 T→∞T 2 2 2 Thustheunitstepsignalisapower-typesignalanditspowercontentis1/2 4) (cid:90) T (cid:90) T (cid:12)T/2 Ex = Tli→m∞ −2T x2(t)dt =Tli→m∞ 02 K2t−12dt =Tli→m∞2K2t12(cid:12)(cid:12)(cid:12)0 2 √ = lim 2K2T12 =∞ T→∞ Thusthesignalisnotanenergy-typesignal. (cid:90) T (cid:90) T Px = lim 1 2 x2(t)dt = lim 1 2 K2t−12dt T→∞T −T T→∞T 0 2 = lim 12K2t12(cid:12)(cid:12)(cid:12)T/2 = lim 12K2(T/2)12 = lim √2K2T−12 =0 T→∞T (cid:12)0 T→∞T T→∞ SinceP isnotboundedawayfromzeroitfollowsbydefinitionthatthesignalisnotofthepower-type x (recallthatpower-typesignalsshouldsatisfy0<P <∞). x Problem 2.10 t+1, −1≤t ≤0 1 t >0 Λ(t)= −t+1, 0≤t ≤1 u−1(t)= 1/2 t =0 0, o.w. 0 t <0 Thus,thesignalx(t)=Λ(t)u−1(t)isgivenby 10/2 tt =<00 t+01 t−≤1≤−1t <0 x(t)= (cid:61)⇒x(−t)= −t0+1 0t ≥≤1t ≤1 10/2 tt =>00 Theevenandtheoddpartofx(t)aregivenby x(t)+x(−t) 1 x (t) = = Λ(t) e 2 2 x(t)−x(−t) −t02−1 t−≤1≤−1t <0 xo(t) = = 0 t =0 2 −t02+1 10<≤tt ≤1 10 Problem 2.11 1)Supposethat x(t)=x1(t)+x1(t)=x2(t)+x2(t) e o e o withx1(t),x2(t)evensignalsandx1(t),x1(t)oddsignals. Then,x(−t)=x1(t)−x1(t)sothat e e o o e o x(t)+x(−t) x1(t) = e 2 x2(t)+x2(t)+x2(−t)+x2(−t) = e o e o 2 2x2(t)+x2(t)−x2(t) = e o o =x2(t) 2 e Thusx1(t)=x2(t)andx1(t)=x(t)−x1(t)=x(t)−x2(t)=x2(t) e e o e e o 2)Letx1(t),x2(t)betwoevensignalsandx1(t),x2(t)betwooddsignals. Then, e e o o y(t)=x1(t)x2(t) (cid:61)⇒ y(−t)=x1(−t)x2(−t)=x1(t)x2(t)=y(t) e e e e e e z(t)=x1(t)x2(t) (cid:61)⇒ z(−t)=x1(−t)x2(−t)=(−x1(t))(−x2(t))=z(t) o o o o o o Thustheproductoftwoevenoroddsignalsisanevensignal. Forv(t)=x1(t)x1(t)wehave e o v(−t)=x1(−t)x1(−t)=x1(t)(−x1(t))=−x1(t)x1(t)=−v(t) e o e o e o Thustheproductofanevenandanoddsignalisanoddsignal. 3)Onetrivialexampleist+1and t2 . t+1 Problem 2.12 1)x (t)=Π(t)+Π(−t). ThesignalΠ(t)isevensothatx (t)=2Π(t) 1 1 2 1 . . . . . . . . . . . . . . . . . . 1 1 2 2 11