loading

Logout succeed

Logout succeed. See you again!

ebook img

Gaussian Integral Means of Entire Functions PDF

file size0.16 MB
languageEnglish

Preview Gaussian Integral Means of Entire Functions

GAUSSIAN INTEGRAL MEANS OF ENTIRE FUNCTIONS CHUNJIEWANGANDJIEXIAO 3 1 0 ABSTRACT. Foranentirefunctionf : C Candatriple(p,α,r) 2 7→ ∈ (0, ) ( , ) (0, ], the Gaussian integral means of f (with n resp∞ect×toth−e∞are∞ame×asure∞dA)isdefinedby a J M (f,r)= e−α|z|2dA(z) −1 f(z)pe−α|z|2dA(z). p,α 3 | | 1 Viaderivingam(cid:16)aZx|izm|<urmprinciplefor(cid:17)M Z|(zf|<,rr),weestablishnotonly p,α ] Fock-SobolevtraceinequalitiesassociatedwithMp,p/2(zmf(z), )(as V m = 0,1,2,...), but also convexitiesof r lnM (zm,r) an∞d r p,α C M2,α<0(f,r)inlnrwith0<r< . 7→ 7→ ∞ . h t a m 1. INTRODUCTION [ 3 Let dA be the Euclidean area measure on the finite complex plane C. v Suppose α is real and 0 < p < . For any entire function f : C C, we 9 ∞ 7→ consideritsGaussianintegralmeans 4 3 f(z) pe−α|z|2dA(z) 0 M (f,r) = |z|<r| | r (0, ). 1. p,α e−α|z|2dA(z) ∀ ∈ ∞ R 0 |z|<r 3 Uponwriting R 1 : M(r) = 2π f(reiθ) pdθ; v 0 | | i v(r) = re−αr2; X  R r i = √ 1 theimaginaryunit, a − − weget   r d v(r) M(r) M(s) v(s)ds M (f,r) = 0 − 0, dr p,α 2π rv(s)ds 2 ≥ R (cid:0) (cid:1) 0 and hence the function r Mp,α(f,r(cid:0))Ris strictly(cid:1)increasing on (0, ) un- less f is constant. Conseq7→uently, letting r 0 and r in M ∞(f,r) p,α → → ∞ 2000MathematicsSubjectClassification. Primary30C80,30H20,52A38,53C43. Key words and phrases. Maximum principle, trace inequality, logarithmic convexity, Fock-Sobolevspace. ThisworkwasinpartsupportedbyNSERCofCanadaandcompletedduringthefirst- namedauthor’svisit(2012.9-12)toMemorialUniversity. 1 2 CHUNJIEWANGANDJIEXIAO respectively,wefind thefollowingmaximumprincipleforr (0, ): ∈ ∞ f(0) p = M (f,0) M (f,r) p,α p,α | | ≤ f(z) pe−α|z|2dA(z) M (f, ) = C| | ≤ p,α ∞ e−α|z|2dA(z) R C withequalityifand onlyiff isaconstant.R Besides the above maximum principle we are here motived mainly by [15,6,7,13,12,14,2]totakeafurtherlookattheGaussianintegralmeans M (f,r) from two perspectives. The first is to treat the last inequality as p,α a space embedding: if dµ (z) = 1 dA(z) (with 1 being the character- r |z|<r E isticfunctionofE C)then ⊂ f(z)e−|z2|2 pdµr(z) e−p|z2|2 dA(z) Mp,p/2(f, ). | | ≤ ∞ ZC (cid:18)Z|z|<r (cid:19) Such an interpretation leads to characterizing a given nonnegative Borel measureµ on Csuch thatthefollowingFock-Sobolevtraceinequality f Lq(C,µ) k k 1 f(z)e−|z2|2 qdµ(z) q ≡ | | C (cid:18)Z (cid:19) 1 . M (zmf(z), ) p p,p/2 ∞ (cid:16) (cid:17) 1 zmf(z)e−|z2|2 pdA(z) p ≈ | | C (cid:18)Z (cid:19) f Fp,m ≡ k k holds for all holomorphic functions f : C C in p,m. In the above and 7→ F below: 0 < p,q < ; • X . Y (i.e∞. Y & X) means that there is a constant c > 0 such that X• cY -moreover- X Y isequivalenttoX . Y . X; ≤ ≈ m isnonnegativeinteger; • p = p,0 and p,m stand for the so-called Fock space and Fock- • F F F Sobolev space of order m 1 respectively. Interestingly, for an entire functionf : C C onehas≥(cf. [2]): 7→ f p,m f(0) + + f(m−1)(0) + f(m) < . Fp,0 ∈ F ⇐⇒ | | ··· | | k k ∞ B(a,r) = z C : z a < r is the Euclidean disk centered at a• Cwithradi{us r∈> 0. | − | } ∈ GAUSSIANINTEGRALMEANSOFENTIREFUNCTIONS 3 As stated in Theorem 3 of Section 2, the above-required measure is fully determinedby sup µ(B(a,r)) < as 0 < p q < ; a∈C (1+|a|)qm ∞ ≤ ∞ p  µ(B(a,r)) p−q dA(a) < as 0 < q < p < .  C (1+|a|)qm ∞ ∞ (cid:16) (cid:17) R Asaparticularlyinterestingandnaturalby-productofthischaracterization,  we can also use the Taylor expansion of an entire function at the origin to gettheoptimalGaussianPoincare´ inequality(see[8, (1.6)]aswellas[5, p. 115] and [16, Theorem 1] for the endpoint case corresponding to f 1,1 ∈ F withf(0) = 0) f(z)e−|z2|2 2dA(z) π f(0) 2 f′(z)e−|z2|2 2dA(z) f 2,1 | | − | | ≤ | | ∀ ∈ F C C Z Z which,plustheforegoingmaximum-principle-basedestimate(cf. [2, (1)]) f′(z) e−|z2|2 (2π)−1 f′(z)e−|z2|2 dA(z) f 1,1, | | ≤ | | ∀ ∈ F C Z derivesthefollowingGaussianisoperimetric-Sobolevinequalityf 1,1: ∈ F 2 f(z)e−|z2|2 2dA(z) π f(0) 2 (2π)−1 f′(z)e−|z2|2 dA(z) | | − | | ≤ | | C C Z (cid:18)Z (cid:19) whosesharp formis 2 f(z)e−|z2|2 2dA(z) π f(0) 2 (4π)−1 f′(z)e−|z2|2 dA(z) | | − | | ≤ | | C C Z (cid:18)Z (cid:19) since this inequality can be proved valid for the entire functions f(z) = zk with k = 1,2,3,... through a direct computation with the polar coordinate system,themathematicalinductionand theinequalityforthegammafunc- tionΓ( )below: · Γ k+1 k +1 2 . Γ k ≤ 2 (cid:0) 2 (cid:1) r The second is to decide: w(cid:0)hen(cid:1) lnr lnM (zk,r) is convex for r p,α 7→ ∈ (0, ),namely,whentheGaussianHadamardThreeCircleTheorembelow ∞ r r r ln 2 lnM (zk,r) ln 2 lnM (zk,r )+ ln lnM (zk,r ) p,α p,α 1 p,α 2 r ≤ r r 1 1 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) holds for 0 < r r r < . The expected result is presented in The- 1 2 ≤ ≤ ∞ orem 7 of Section 3, saying that for a nonnegativeinteger k and a positive 4 CHUNJIEWANGANDJIEXIAO numberp, lnr lnM (zk,r)is concaveas r (0, )under0 < α < ; p,α 7→ ∈ ∞ ∞ c (0, ) lnr lnM (zk,r)isconvexand concave  p,α ∃ ∈ ∞ ∋ 7→  as r (0,c]andr [c, )respectivelyunder < α 0. ∈ ∈ ∞ −∞ ≤ As a consequence, we have that if < α, p < 0 then the function   −∞ − lnr lnM (zk,r) is convex as r (0, (2+pk)/( 2α)] and hence p,α 7→ ∈ − the function lnr lnM (f,r) is convex as r (0, 1/( α)] for any entirefunctionf :7→C C2.,αIn otherwords, p ∈ − 7→ p r r r ln 2 lnM (f,r) ln 2 lnM (f,r )+ ln lnM (f,r ) 2,α 2,α 1 2,α 2 r ≤ r r 1 1 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) when 0 < r r r < 1/( α). However, as proved in Remark 9 via 1 2 ≤ ≤ − consideringtheentirefunction1+z, thelastconvexitycannotbeextended p to(0, ). ∞ 2. TRACE INEQUALITIES FOR FOCK-SOBOLEV SPACES Weneedtwolemmas. Thefirstlemmacomesfrom[2]and[18,17,4,11]. Lemma 1. Let p,σ,a,t,λ (0, ). ∈ ∞ (i) If m is a nonnegative integer, p (z) is the Taylor polynomial of ez of m orderm 1 (with theconventionthatp = 0), andb > (mp+2),then 0 − − ezw pm(zw) pe−a|w|2 w bdA(w) . z bep4a2|z|2 z σ. | − | | | | | ∀ | | ≥ C Z Furthermore,thislastinequalityholdsalsoforall z C when b pm. (ii)If f : C C isan entirefunction,then ∈ ≤ 7→ p p f(z)e−λ2|z|2 . f(w)e−λ2|w|2 dA(w) z C. ∀ ∈ (cid:12) (cid:12) ZB(z,t)(cid:12) (cid:12) (iii) The(cid:12)re exists a p(cid:12)ositive cons(cid:12)tant r such(cid:12)that for any 0 < r < r , the (cid:12) (cid:12) (cid:12) 0 (cid:12) 0 Fockspace p exactlyconsistsofallfunctionsf = c k , where F w∈rZ2 w w k (z) = exp(zw¯ w 2/2); P w −| | c : w rZ2 lp;  w { ∈ } ∈  1 k{cw}klp = w∈rZ2|cw|p p; Z2 = n+im : n,m = 0, 1, 2,... ; { (cid:0)P (cid:1)± ± } rZ2 = r(n+im) : n,m = 0, 1, 2,... .   { ± ± }  Moreover    f inf c f p, Fp w lp k k ≈ k{ }k ∀ ∈ F wheretheinfimumistakenoverallsequences c givingrisetotheabove w { } decomposition. GAUSSIANINTEGRALMEANSOFENTIREFUNCTIONS 5 The second lemmais the so-called Khinchine’s inequality, which can be found,forexample,in[7]. Lemma 2. Suppose p (0, ) and c C. For the integer part [t] of j ∈ ∞ ∈ t (0, )let ∈ ∞ 1, 0 t [t] < 1/2 r (t) = ≤ − 0 1, 1/2 t [t] < 1 (cid:26) − ≤ − and r (t) = r (2jt) j = 1,2, . j 0 ∀ ··· Then m 21 1 m p p1 c 2 ≈ c r (t) dt . j j j | | Xj=1 ! Z0 (cid:12)(cid:12)Xj=1 (cid:12)(cid:12) ! (cid:12) (cid:12) As the main result of this section, t(cid:12)he forthcom(cid:12) ing family of analytic- (cid:12) (cid:12) geometrictrace inequalitiesfortheFock-Sobolevspacesisanaturalgener- alizationoftheso-calleddiagonalCarlesonmeasuresfortheFock-Sobolev spaces in[2]. Theorem 3. Let m be a nonnegative integer, r (0, ), and µ be a non- negativeBorel measureon C. ∈ ∞ (i)If0 < p q < , then ≤ ∞ f . f f p,m Lq(C,µ) Fp,m k k k k ∀ ∈ F when andonlywhen µ(B(a,r)) sup < . a∈C (1+ a )mq ∞ | | Equivalently,a µ(B(a,r))(1+ a )−qm is ofclassL∞(C). 7→ | | (ii)If 0 < q < p < , then ∞ f . f f p,m Lq(C,µ) p,m k k k k ∀ ∈ F when andonlywhen p µ(B(a,r)) p−q < where s (0, ). (1+ a )mq ∞ ∈ ∞ a∈sZ2(cid:18) | | (cid:19) X Equivalently,a µ(B(a,r))(1+ a )−qm is ofclassLp/(p−q)(C). 7→ | | Proof. (i) Suppose 0 < p q < . The following argument is similar to ≤ ∞ thatofTheorem10 in[2]. Assumefirstlythat f . f holdsforallf p,m. Taking Lq(C,µ) Fp,m f = 1showsthatµ(Kk) .k 1foranykcokmpactset K C. ∈ F Fix anya C and let ⊂ ∈ f(z) = (eza p (za))/zm m − 6 CHUNJIEWANGANDJIEXIAO inthelastassumption. ThenLemma1(i)implies eza p (za) q − m e−12|z|2 dµ(z) . (ep2|a|2)pq = eq2|a|2. zm C Z (cid:12) (cid:12) (cid:12) (cid:12) Inparticular, (cid:12) (cid:12) (cid:12) (cid:12) eza p (za) q − m e−12|z|2 dµ(z) . eq2|a|2. zm ZB(a,r)(cid:12) (cid:12) (cid:12) (cid:12) If a > 2r,then z m(cid:12)iscomparableto(1+(cid:12) a )m forB(a,r). So | | | | (cid:12) (cid:12)| | eza q 1 e−zapm(za) qe−q2|z|2dµ(z) . (1+ a )mqe2q|a|2 | | | − | | | ZB(a,r) holdsforall a > 2r. Notethat | | lim inf 1 e−zap (za) = 1. m |a|→∞z∈B(a,r)| − | Thus eza qe−2q|z|2dµ(z) . (1+ a )mqeq2|a|2 | | | | ZB(a,r) holdsforthesufficientlylarge a . But thislastinequalityisclearly truefor | | smaller a as well. So wehave | | eza qe−q2|z|2dµ(z) . (1+ a )mqe2q|a|2 a C. | | | | ∀ ∈ ZB(a,r) Completing a square in the exponent, we can rewrite the inequality above as e−q2|z−a|2dµ(z) . (1+ a )mq | | ZB(a,r) therebydeducing µ(B(a,r)) . (1+ a )mqeq2r2 a C. | | ∀ ∈ Conversely,assumethat µ(B(a,r)) . (1+ a )mq a C. | | ∀ ∈ Weproceed toestimatetheintegral kfkqLq(C,µ) = |f(z)e−21|z|2|qdµ(z) C Z of any given function f p,m. For any positive number s let Q denote s thefollowingsquareinC∈wFithvertices 0,s,si,and s+si: Q = z = x+iy : 0 < x s & 0 < y s . s { ≤ ≤ } Itis clearthat C = (Q +a) a∈sZ2 s ∪ GAUSSIANINTEGRALMEANSOFENTIREFUNCTIONS 7 isadecompositionofCintodisjointsquares ofsidelengths. Thus kfkqLq(C,µ) = |f(z)e−12|z|2|qdµ(z). a∈sZ2ZQs+a X Fix positivenumberss and tsuch thatt+√s = r. By Lemma1(ii) f(z)e−21|z|2 p . f(w)e−21|w|2 pdA(w) | | | | ZB(z,t) 1 . wmf(w)e−21|w|2 pdA(w) (1+ z )mp | | | | ZB(z,t) holds for all z C. Now if z Q +a, where a sZ2 implies B(z,t) s ∈ ∈ ∈ ⊂ B(a,r)bythetriangleinequality,andhence1+ z 1+ a . Consequently, | | ≈ | | 1 f(z)e−21|z|2 p . wmf(w)e−12|w|2 pdA(w). | | (1+ a )mp | | | | ZB(a,r) Thisamountsto q f(z)e−12|z|2 q . 1 wmf(w)e−21|w|2 pdA(w) p . | | (1+ a )mq | | | | (cid:18)ZB(a,r) (cid:19) Therefore, q kfkqLq(C,µ) . (µ1(B+(aa,)rm))q |wmf(w)e−21|w|2|pdA(w) p . a∈sZ2 | | (cid:18)ZB(a,r) (cid:19) X Combiningthislast estimatewiththepreviousassumptiononµ and p q, ≤ weobtain q kfkqLq(C,µ) . |wmf(w)e−21|w|2|pdA(w) p a∈sZ2(cid:18)ZB(a,r) (cid:19) X q p . wmf(w)e−21|w|2 pdA(w) . | | a∈sZ2ZB(a,r) ! X NotethatthereexistsapositiveintegerN suchthateachpointinCbelongs toat mostN ofthedisksB(a,r), wherea sZ2. So, onegets ∈ q kfkqLq(C,µ) . |wmf(w)e−12|w|2|pdA(w) p ≈ kfkqFp,m, C (cid:18)Z (cid:19) asdesired. (ii)Suppose0 < q < p < . Thefollowingproofis inspiredby[13]. ∞ 8 CHUNJIEWANGANDJIEXIAO First assume that f . f holds for all f p,m. For any Lq(C,µ) Fp,m k k k k ∈ F c lp, wemay choose r (t) as in Lemma2, therebygetting j j { } ∈ { } c r (t) lp & c r (t) = c . j j j j lp j lp { } ∈ k{ }k k{ }k Thenby Lemma1 (iii)weknowthat ∞ c r (t)k (z) zmf(z) j j aj ≡ j=1 X is in p with norm f inf c . Here a is the sequence of Fp,m j lp j F k k ≈ k{ }k { } allcomplexnumbersofsZ2 and k (z) = eza−1|a|2. In particular, a 2 ∞ f(z) = c r (t)k (z)z−m. j j aj j=1 X Accordingtotheassumptionwehave ∞ k (z) q c r (t) aj dµ(z) = f q . f q , j j zme|z|2/2 k kLq(C,µ) k kFp,m C Z (cid:12)Xj=1 (cid:12) (cid:12) (cid:12) whencegett(cid:12)ingby Lemma2, (cid:12) ∞ q |cjkaj(z)e−21|z|2|2|z|−2m 2dµ(z) . kfkqFp,m. C Z (cid:16)Xj=1 (cid:17) Also, note that if a > 2r then z m is comparable to (1 + a )m for z | | | | | | ∈ B(a,r). So ∞ q |cjkaj(z)e−12|z|2|2|z|−2m 2dµ(z) C Z (cid:16)Xj=1 (cid:17) ∞ ∞ q = cje−21|z−aj|2 2 z −2m 2dµ(z) | | | | Xl=1 ZQs+al (cid:16)Xj=1 (cid:17) ∞ cl q z −mqe−2q|z−al|2dµ(z) ≥ | | | | l=1 ZQs+al X ∞ & cj q z −mqe−2q|z−aj|2dµ(z) | | | | j=1 ZB(aj,r) X ∞ µ(B(a ,r)) & c q j . | j| (1+ a )mq j j=1 | | X GAUSSIANINTEGRALMEANSOFENTIREFUNCTIONS 9 So, acombinationofthepreviously-establishedinequalitiesgives ∞ µ(B(a ,r)) c q j . c q = c q . | j| (1+ a )mq k{| j|}klp k{| j| }klp/q j j=1 | | X Sincep/(p q)istheconjugatenumberofp/q,anapplicationoftheRiesz − representationtheoremyields µ(B(a ,r)) j p lp−q. (1+ a )mq ∈ (cid:26) | j| (cid:27) Conversely, assume that the last statement holds. Note that the first part oftheargument fortheabove(i)tellsthat q kfkqLq(C,µ) . (µ1(B+(aa,)rm))q |wmf(w)e−21|w|2|pdA(w) p a∈sZ2 | | (cid:18)ZB(a,r) (cid:19) X holdsforallf p,m. ApplyingHo¨lder’sinequalitytothelastsummation ∈ F weobtain p−q p µ(B(a,r)) p−q p f q . k kLq(C,µ) (1+ a )mq ! a∈sZ2(cid:18) | | (cid:19) X q p wmf(w)e−21|w|2 pdA(w) . × | | a∈sZ2ZB(a,r) ! X Onceagain,noticethatthereexistsapositiveintegerN suchthateachpoint inC belongstoat mostN ofthedisksB(a,r), wherea sZ2. So, ∈ p−q p µ(B(a,r)) p−q p f q . f q . k kLq(C,µ) (1+ a )mq k kFp,m ! a∈sZ2(cid:18) | | (cid:19) X Thiscompletestheargument. (cid:3) The following extends [1, Theorem 5] (cf. [10, Theorem 1]), and [3, Theorem1], respectively. Corollary 4. Let φ : C C be an entire function. For p (0, ) and 7→ ∈ ∞ a nonnegative integer m define two linear operators acting on an entire functionf : C C: 7→ C f(z) = f φ(z) z C; φ ◦ ∀ ∈ T f(z) = zf(w)φ′(w)dw z C. ( φ 0 ∀ ∈ R 10 CHUNJIEWANGANDJIEXIAO (i)ThecompositionoperatorC : p,m q existsasaboundedoperator φ F 7→ F ifandonlyif sup Rφ−1(B(a,r))e−q|z|2/2dA(z) < when 0 < p q < ; a∈C (1+|a|)mq ∞ ≤ ∞  Rφ−1(B(a,r))e−q|z|2/2dA(z) p/(p−q)dA(a) < when 0 < q < p < .  C (1+|a|)mq ∞ ∞ (cid:16) (cid:17) R (ii) The Riemann-Stieltjes integral operator T : p,m q exists as a φ F 7→ F boundedoperatorifandonlyif R |φ′(z)| qdA(z) sup B(a,r) (1+|z|) < when 0 < p q < ; a∈C (1+|a|)mq ∞ ≤ ∞  R |φ′(cid:0)(z)| qd(cid:1)A(z) p/(p−q)  B(a,r) (1+|z|) dA(a) < when 0 < q < p < .  C (1+|a|)mq ∞ ∞ (cid:0) (cid:1) (cid:16) (cid:17) ProRof. (i)ForanyBorelsetE Cletφ−1(E)bethepre-imageofE under ⊂ φand q z 2 µ(E) = exp | | dA(z). − 2 Zφ−1(E) (cid:16) (cid:17) Then kCφfkqLq(C,µ) = |f(z)e−|z2|2|qdµ(z) ∀ f ∈ Fp,m. C Z An application of Theorem 3 with the above formula gives the desired re- sult. (ii) According to [3, Proposition 1], an entire function f : C C be- 7→ longsto q ifand onlyif F f′(z) e−|z2|2 q | | dA(z) < . 1+ z ∞ C Z (cid:16) | | (cid:17) So, T f q isequivalentto φ ∈ F f(z)φ′(z) e−|z2|2 q | | dA(z) < . 1+ z ∞ C Z (cid:16) | | (cid:17) Now,choosing φ′(z) q dµ(z) = | | dA(z) 1+ z (cid:16) | |(cid:17) inTheorem 3, weget theboundednessresultforT . (cid:3) φ

See more

The list of books you might like