loading

Logout succeed

Logout succeed. See you again!

ebook img

Handbook of mathematics PDF

pages1255 Pages
file size7.985 MB
languageEnglish

Preview Handbook of mathematics

I. N. Bronshtein K. A. Semendyayev G. Musiol H. Mühlig H ANDBOOK OF M ATHEMATICS Sixth Edition 123 Handbook of Mathematics I.N. Bronshtein K.A. Semendyayev • ü Gerhard Musiol Heiner M hlig • Handbook of Mathematics Sixth Edition With799 Figuresand132Tables 123 I.N.Bronshtein(Deceased) GerhardMusiol Dresden,Sachsen K.A.Semendyayev(Deceased) Germany HeinerMühlig Dresden,Sachsen Germany ISBN978-3-662-46220-1 ISBN978-3-662-46221-8 (eBook) DOI10.1007/978-3-662-46221-8 LibraryofCongressControlNumber:2015933616 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) PrefacetotheSixthEnglishEdition ThissixthEnglisheditionisbasedonthefifthEnglishedition(2007)andcorrespondstotheimproved seventh(2008),eighth(2012)andninth(2013)Germanedition. Itcontainsallthechaptersofthe mentionededitions,butinarenewed,revisedandextendedform(seealsotheprefacetothefifthEnglish edition). SpecialnewpartstobementionedherearesuchsupplementarysectionsasGeometricandCoordinate TransformationsandPlainProjectionsinChapteronGeometry,asQuaternionsandApplicationsin ChapteronLinearAlgebra,asLieGroupsandLieAlgebrasinChapteronAlgebraandDiscreteMath- ematicsandasMatlabinChapteronNumericalAnalysis.TheChapteronComputerAlgebraSystems isrestrictedtoMathematicaonlyasarepresentativeexampleforsuchsystems. ExtendedandrevisedparagraphsaregiveninChapteronGeometryaboutCardanandEulerangles andaboutCoordinatetransformations,inChapteronIntegralCalculusaboutApplicationsofDefinite Integrals,inChapteronOptimizationaboutEvaluationStrategies,inChapteronTablesaboutNatural ConstantsandPhysicalUnits(SystemSI).TheIndexhasbeencompletedtoanextentasintheprevious Germaneditions. Wewouldliketocordiallythankallreadersandprofessionalcolleagueswhohelpeduswiththeirvalu- ablestatements,remarksandsuggestionsontheGermaneditionsofthebookduringtherevisionpro- cess. SpecialthanksgotoMrs. ProfessorDr. GabriellaSz´ep(Budapest), whomadethisEnglish editionpossiblebyvaluablecontributionsandthebasictranslationintotheEnglish.Furthermoreour thanksgotoallco-authorsforthecriticaltreatmentoftheirchapters. Dresden,December2014 Prof.Dr.GerhardMusiol Prof.Dr.HeinerMu¨hlig PrefacetotheFifthEnglishEdition ThisfiftheditionisbasedonthefourthEnglishedition(2003)andcorrespondstotheimprovedsixth Germanedition(2005). Itcontainsallthechaptersofthebothmentionededitions,butinarenewed revisedandextendedform. Sointheworkathand,theclassicalareasofEngineeringMathematicsrequiredforcurrentpracticeare presented,suchas“Arithmetic”,“Functions”,“Geometry”,“LinearAlgebra”,“AlgebraandDiscrete Mathematics”,(including“Logic”,“SetTheory”,“ClassicalAlgebraicStructures”,“FiniteFields”, “ElementaryNumberTheory”,”Cryptology”,“UniversalAlgebra”,“BooleanAlgebraandSwitchAl- gebra”,“AlgorithmsofGraphTheory”,“FuzzyLogic”),“Differentiation”,“IntegralCalculus”,“Dif- ferentialEquations”,“CalculusofVariations”,“LinearIntegralEquations”,“FunctionalAnalysis”, “VectorAnalysisandVectorFields”,“FunctionTheory”,“IntegralTransformations”,“Probability TheoryandMathematicalStatistics”. Fieldsofmathematicsthathavegainedimportancewithregardstotheincreasingmathematicalmod- eling and penetration of technical and scientific processes also receive special attention. Included amongstthesechaptersare“StochasticProcessesandStochasticChains”aswellas“CalculusofEr- rors”, “Dynamical Systems and Chaos”, “Optimization”, “Numerical Analysis”, “Using the Com- puter”and“ComputerAlgebraSystems”. TheChapter21containingalargenumberofusefultablesforpracticalworkhasbeencompletedby VI addingtableswiththephysicalunitsoftheInternationalSystemofUnits(SI). Dresden,February2007 Prof.Dr.GerhardMusiol Prof.Dr.HeinerMu¨hlig FromthePrefacetotheFourthEnglishEdition The“HandbookofMathematics”bythemathematician,I.N.Bronshteinandtheengineer,K.A. Semendyayevwasdesignedforengineersandstudentsoftechnicaluniversities. Itappearedforthe firsttimeinRussianandwaswidelydistributedbothasareferencebookandasatextbookforcolleges anduniversities.ItwaslatertranslatedintoGermanandthemanyeditionshavemadeitapermanent fixtureinGerman-speakingcountries,wheregenerationsofengineers,naturalscientistsandothersin technicaltrainingoralreadyworkingwithapplicationsofmathematicshaveusedit. OnbehalfofthepublishinghouseHarriDeutsch,arevisionandasubstantiallyenlargededitionwas preparedin1992byGerhardMusiolandHeinerMu¨hlig,withthegoalofgiving”Bronshtein”themod- ernpracticalcoveragerequestedbynumerousstudents, universityteachersandpractitioners. The originalstylesuccessfullyusedbytheauthorshasbeenmaintained.Itcanbecharacterizedas“short, easilyunderstandable,comfortabletouse,butfeaturingmathematicalaccuracy(atalevelofdetail consistentwiththeneedsofengineers)”∗.Since2000,therevisedandextendedfifthGermaneditionof therevisionhasbeenonthemarket. Acknowledgingthesuccessthat“Bronstein”hasexperienced intheGerman-speakingcountries,SpringerVerlagHeidelberg/GermanyispublishingafourthEnglish edition,whichcorrespondstotheimprovedandextendedfifthGermanedition. Thebookisenhancedwithoverathousandcomplementaryillustrationsandmanytables. Special functions,seriesexpansions,indefinite,definiteandellipticintegralsaswellasintegraltransformations andstatisticaldistributionsaresuppliedinanextensiveappendixoftables. Inordertomakethereferencebookmoreeffective,clarityandfastaccessthroughaclearstructure werethegoals,especiallythroughvisualcluesaswellasbyadetailedtechnicalindexandcoloredtabs. Anextendedbibliographyalsodirectsuserstofurtherresources. SpecialthanksgotoMrs.ProfessorDr.GabriellaSz´ep(Budapest),whomadethisEnglishdebutver- sionpossible. Dresden,June2003 Prof.Dr.GerhardMusiol Prof.Dr.HeinerMu¨hlig Co-Authors Somechaptersorsectionsaretheresultofcooperationwithco-authors. Chapterresp. section Co-author SphericalTrigonometry(3.4.1–3.4.3.3) Dr.H.Nickel ,Dresden SphericalCurves(3.4.3.4) Prof.L.Marsolek,Berlin GeometricTransformations,CoordinateTrans- formations,PlanarProjections(3.5.4,3.5.5) Dr.I.Steinert,Du¨sseldorf QuaternionsandApplications(4.4) PDDr.S.Bernstein,Freiberg(Sachsen) ∗SeePrefacetotheFirstRussianEdition VII Logic(5.1),SetTheory(5.2),ClassicalAlgebraic Structures(5.3),ApplicationsofGroups (beyond)5.3.4,5.3.5.4–5.3.5.6),RingsandFields (5.3.7),VectorSpaces(5.3.8),BooleanAlgebra andSwitchAlgebra(5.7),UniversalAlgebra(5.6) Dr.J.Brunner,Dresden GroupRepresentation(5.3.4),Applicationsof Groups(5.3.5.4–5.3.5.6) Prof.Dr.R.Reif,Dresden Lie–GroupsandLie–Algebras(5.3.6) PDDr.S.Bernstein,Freiberg(Sachsen) ElementaryNumberTheory(5.4),Cryptology, (5.5)Graphs(5.8) Prof.Dr.U.Baumann,Dresden Fuzzy–Logic(5.9) Prof.Dr.A.Grauel,Soest ImportantFormulasfortheSphericalBessel Functions(9.1.2.6,sub-point2.5) Prof.Dr.P.Ziesche,Dresden StatisticalInterpretationoftheWaveFunction (9.2.4.4) Prof.Dr.R.Reif,Dresden Non-linearpartialDifferentialEquations: Solitons,PeriodicPatternsandChaos(9.2.5) Prof.Dr.P.Ziesche,Dresden DissipativeSolitons,LightandDark Solitons(9.2.5.3,inpoint2) Dr.J.Brand,Dresden LinearIntegralEquations(11) Dr.I.Steinert,Du¨sseldorf Functionalanalysis(12) Prof.Dr.M.Weber,Dresden EllipticFunctions(14.6) Dr.N.M.Fleischer ,Moskau DynamicalSystemsandChaos(17) Prof.Dr.V.Reitmann,St.Petersburg Optimization(18) Dr.I.Steinert,Du¨sseldorf UsingtheComputer:(19.8.1,19.8.2),Interactive System:Mathematica(19.8.4.2),Maple(19.8. 4.3),ComputeralgebraSystems–ExampleMathe- matica(20) Prof.Dr.G.Flach,Dresden InteractiveSystem:Matlab(19.8.4.1) PDDr.B.Mulansky,Clausthal ComputeralgebraSystems–ExampleMathemati- ca(20):Revisionofthechapterinaccordancewith version10ofMathematica Dr.J.T´oth,Budapest AdditionalChapterswithCo-AuthorsintheCD–ROM totheBooksoftheGermanEditions7,8and9. Lie–GroupsandLie–Algebras(5.3.5),(5.3.6) Prof.Dr.R.Reif,Dresden Non-linearPartialDifferentialEquations: InverseScatteringTheory(methodsinanalogy totheFouriermethod)(9.2.6) Dr.B.Rumpf, MathematicalBasisofQuantumMechanics(21) Prof.Dr.A.Buchleitner,PDDr.M.Tiersch, Dr.Th.Wellens,Freiburg Quantencomputer(22) Prof.Dr.A.Buchleitner,PDDr.M.Tiersch, Dr.Th.Wellens,Freiburg VIII Contents Contents ListofTables XLII 1 Arithmetics 1 1.1 ElementaryRulesforCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1.1 Natural,Integer,andRationalNumbers. . . . . . . . . . . . . . . 1 1.1.1.2 IrrationalandTranscendentalNumbers . . . . . . . . . . . . . . . 2 1.1.1.3 RealNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1.4 ContinuedFractions . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1.5 Commensurability . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 MethodsforProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2.1 DirectProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2.2 IndirectProoforProofbyContradiction . . . . . . . . . . . . . . 5 1.1.2.3 MathematicalInduction . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2.4 ConstructiveProof . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 SumsandProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3.1 Sums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3.2 Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 Powers,Roots,andLogarithms. . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4.1 Powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4.2 Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4.3 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4.4 SpecialLogarithms . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 AlgebraicExpressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.5.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.5.2 AlgebraicExpressionsinDetail . . . . . . . . . . . . . . . . . . . 11 1.1.6 IntegralRationalExpressions. . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.6.1 RepresentationinPolynomialForm . . . . . . . . . . . . . . . . . 11 1.1.6.2 FactoringPolynomials . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.6.3 SpecialFormulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.6.4 BinomialTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.6.5 DeterminationoftheGreatestCommonDivisorofTwoPolynomials 14 1.1.7 RationalExpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1.7.1 ReducingtotheSimplestForm. . . . . . . . . . . . . . . . . . . . 14 1.1.7.2 DeterminationoftheIntegralRationalPart. . . . . . . . . . . . . 15 1.1.7.3 PartialFractionDecomposition . . . . . . . . . . . . . . . . . . . 15 1.1.7.4 TransformationsofProportions . . . . . . . . . . . . . . . . . . . 17 1.1.8 IrrationalExpressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 FiniteSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.1 DefinitionofaFiniteSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.2 ArithmeticSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.3 GeometricSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.4 SpecialFiniteSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.5 MeanValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.5.1 ArithmeticMeanorArithmeticAverage . . . . . . . . . . . . . . 19 1.2.5.2 GeometricMeanorGeometricAverage . . . . . . . . . . . . . . . 20 1.2.5.3 HarmonicMean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.5.4 QuadraticMean. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Contents IX 1.2.5.5 RelationsBetweentheMeansofTwoPositiveValues. . . . . . . . 20 1.3 BusinessMathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1 CalculationofInterestorPercentage. . . . . . . . . . . . . . . . . . . . . . 21 1.3.1.1 PercentageorInterest . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1.2 Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1.3 DiscountorReduction . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2 CalculationofCompoundInterest . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.2.1 Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.2.2 CompoundInterest . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.3 AmortizationCalculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3.1 Amortization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3.2 EqualPrincipalRepayments . . . . . . . . . . . . . . . . . . . . . 23 1.3.3.3 EqualAnnuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.4 AnnuityCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.4.1 Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.4.2 FutureAmountofanOrdinaryAnnuity . . . . . . . . . . . . . . . 25 1.3.4.3 Balanceaftern AnnuityPayments . . . . . . . . . . . . . . . . . 25 1.3.5 Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.5.1 MethodsofDepreciation . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.5.2 Straight-LineMethod. . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.5.3 ArithmeticallyDecliningBalanceDepreciation . . . . . . . . . . . 26 1.3.5.4 DigitalDecliningBalanceDepreciation . . . . . . . . . . . . . . . 27 1.3.5.5 GeometricallyDecliningBalanceDepreciation . . . . . . . . . . . 27 1.3.5.6 DepreciationwithDifferentTypesofDepreciationAccount . . . . 28 1.4 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.1 PureInequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.1.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.1.2 PropertiesofInequalitiesofTypeIandII . . . . . . . . . . . . . . 29 1.4.2 SpecialInequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.2.1 TriangleInequalityforRealNumbers . . . . . . . . . . . . . . . . 30 1.4.2.2 TriangleInequalityforComplexNumbers . . . . . . . . . . . . . . 30 1.4.2.3 InequalitiesforAbsoluteValuesofDifferencesofRealandComplex Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.2.4 InequalityforArithmeticandGeometricMeans . . . . . . . . . . 30 1.4.2.5 InequalityforArithmeticandQuadraticMeans. . . . . . . . . . . 30 1.4.2.6 InequalitiesforDifferentMeansofRealNumbers . . . . . . . . . . 30 1.4.2.7 Bernoulli’sInequality . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.2.8 BinomialInequality. . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.2.9 Cauchy-SchwarzInequality. . . . . . . . . . . . . . . . . . . . . . 31 1.4.2.10 ChebyshevInequality . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.2.11 GeneralizedChebyshevInequality . . . . . . . . . . . . . . . . . . 32 1.4.2.12 H¨olderInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.2.13 MinkowskiInequality . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.3 SolutionofLinearandQuadraticInequalities . . . . . . . . . . . . . . . . . 33 1.4.3.1 GeneralRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3.2 LinearInequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3.3 QuadraticInequalities . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3.4 GeneralCaseforInequalitiesofSecondDegree . . . . . . . . . . . 33 1.5 ComplexNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.1 ImaginaryandComplexNumbers . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.1.1 ImaginaryUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.1.2 ComplexNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . 34 X Contents 1.5.2 GeometricRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.2.1 VectorRepresentation . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.2.2 EqualityofComplexNumbers . . . . . . . . . . . . . . . . . . . . 35 1.5.2.3 TrigonometricFormofComplexNumbers. . . . . . . . . . . . . . 35 1.5.2.4 ExponentialFormofaComplexNumber . . . . . . . . . . . . . . 36 1.5.2.5 ConjugateComplexNumbers . . . . . . . . . . . . . . . . . . . . 36 1.5.3 CalculationwithComplexNumbers . . . . . . . . . . . . . . . . . . . . . . 36 1.5.3.1 AdditionandSubtraction . . . . . . . . . . . . . . . . . . . . . . 36 1.5.3.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5.3.3 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5.3.4 GeneralRulesfortheBasicOperations . . . . . . . . . . . . . . . 37 1.5.3.5 TakingPowersofComplexNumbers. . . . . . . . . . . . . . . . . 38 1.5.3.6 Takingthen-thRootofaComplexNumber . . . . . . . . . . . . 38 1.6 AlgebraicandTranscendentalEquations. . . . . . . . . . . . . . . . . . . . . . . . 38 1.6.1 TransformingAlgebraicEquationstoNormalForm . . . . . . . . . . . . . . 38 1.6.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.6.1.2 SystemsofnAlgebraicEquations . . . . . . . . . . . . . . . . . . 39 1.6.1.3 ExtraneousRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6.2 EquationsofDegreeatMostFour . . . . . . . . . . . . . . . . . . . . . . . 39 1.6.2.1 EquationsofDegreeOne(LinearEquations) . . . . . . . . . . . . 39 1.6.2.2 EquationsofDegreeTwo(QuadraticEquations) . . . . . . . . . . 40 1.6.2.3 EquationsofDegreeThree(CubicEquations) . . . . . . . . . . . 40 1.6.2.4 EquationsofDegreeFour. . . . . . . . . . . . . . . . . . . . . . . 42 1.6.2.5 EquationsofHigherDegree . . . . . . . . . . . . . . . . . . . . . 43 1.6.3 EquationsofDegreen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.3.1 GeneralPropertiesofAlgebraicEquations . . . . . . . . . . . . . 43 1.6.3.2 EquationswithRealCoefficients . . . . . . . . . . . . . . . . . . . 44 1.6.4 ReducingTranscendentalEquationstoAlgebraicEquations . . . . . . . . . 45 1.6.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.6.4.2 ExponentialEquations . . . . . . . . . . . . . . . . . . . . . . . . 46 1.6.4.3 LogarithmicEquations . . . . . . . . . . . . . . . . . . . . . . . . 46 1.6.4.4 TrigonometricEquations . . . . . . . . . . . . . . . . . . . . . . . 46 1.6.4.5 EquationswithHyperbolicFunctions . . . . . . . . . . . . . . . . 47 2 Functions 48 2.1 NotionofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1 DefinitionofaFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.1 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.2 RealFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.3 FunctionsofSeveralVariables . . . . . . . . . . . . . . . . . . . . 48 2.1.1.4 ComplexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.5 FurtherFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.6 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.1.7 FunctionsandMappings . . . . . . . . . . . . . . . . . . . . . . . 49 2.1.2 MethodsforDefiningaRealFunction . . . . . . . . . . . . . . . . . . . . . 49 2.1.2.1 DefiningaFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.1.2.2 AnalyticRepresentationofaFunction. . . . . . . . . . . . . . . . 49 2.1.3 CertainTypesofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.1.3.1 MonotoneFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.1.3.2 BoundedFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1.3.3 ExtremeValuesofFunctions . . . . . . . . . . . . . . . . . . . . . 51 2.1.3.4 EvenFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

See more

The list of books you might like