loading

Logout succeed

Logout succeed. See you again!

ebook img

Hessian equations on closed Hermitian manifolds PDF

file size0.16 MB
languageEnglish

Preview Hessian equations on closed Hermitian manifolds

HESSIAN EQUATIONS ON CLOSED HERMITIAN MANIFOLDS DEKAIZHANG 5 1 0 2 Abstract. Inthispaper,usingthetechnicaltoolsin[14],wesolvethecomplexHessian equationonclosedHermitianmanifolds,whichgeneralizesthetheKa¨hlercaseresultsin n a [4]and[3]. J 5 1. Introduction 1 Let(M,g)beacompactHermitianmanifoldofcomplexdimensionn 2,andωbethe ] ≥ G correspondingHermitianform. In local coordinates,wewriteωas D n ω = √ 1 g dzi dzj. h. − i,j=1 ij ∧ P t a In thispaper, weconsiderthefollowingHessianequationon closedHermitianmanifolds m Ckωk ωn k = efωn, supu = 0 1 [ (1.1)  nωuu=∧ω+−√−1∂∂¯u ∈ ΓMk(M), v 3 whereΓk(M)isaconvexconedefined in (2.2)in section2. 5 Whenk = n,theconditionω Γ (M)isequivalenttoω > 0. Equation(1.1)becomes u k u 5 ∈ thefollowingMonge-Ampereequation 3 0 (1.2) ωn = efωn, supu = 0. . u 1 M 0 In addition,when (M,ω)is aKa¨hler manifold,i.e., dω = 0, Yau [16]solvedtheequation 5 (1.2) now known as Calabi-Yau theorem. For general Hermitian manifolds, the equation 1 : (1.1) has been solved by Cherrier [1] in the case of dimensions 2 and Tosatti-Weinkove v i [11] for arbitrary dimension. For further background, we refer the reader to [10], [11], X [5], [17]and thereferences therein. r a When 2 k n 1, ω may not be positive,the analysis becomes more complicated. u ≤ ≤ − Suppose that (M,ω) is a Ka¨hle manifold and ω Γ (M) which is defined in section 2 , u k ∈ Hou-Ma-Wu [4]provedthefollowingsecondorderestimatesoftheequation(1.1) (1.3) max ∂∂¯u C(1+max u2). | |g ≤ |∇ |g Theyalsopointedoutintheirpaperthat(1.3)maybeadaptedtotheblowingupanalysis. Later on, Dinew-Kolodziej [3] obtained the gradient estimate by (1.3). Thus equation (1.1)can besolvedonKa¨hlermanifoldsunderthecompatiblecondition efωn = ωn. M M R 1 R 2 DEKAIZHANG Tosatti-Weinkove[13]consideredanotherHessiantypedequationrelatedtotheGaudu- chon conjecture (1.4) det ω n 1 + √ 1∂∂¯u ωn 2 = eFdet ωn 1 0 − − − − ∧ (cid:16) (cid:17) (cid:16) (cid:17) ω n 1 + √ 1∂∂¯u ωn 2 > 0,supu = 0, 0 − − − ∧ M whereω andω are twoHermitianmetricson M. 0 In[13],Tosatti-Weinkovesolvedequation(1.4)ifωisKa¨hler. Oneofthemainpartsis doing thesecond order estimate. They use the similarauxiliary function in [4]. Later on, in [14], they can solve (1.4) if ω is Hermitian. The second order estimate becomes more difficultintheHermitiancase,theauthorssucceededtoobtainthesecondorderestimates by modifyingtheauxiliaryfunctionin [4]. In this paper, we solve equation (1.1) on closed Hermitian manifolds. More precisely, ourmainresultis Theorem 1.1. Let (M,g) be a closed Hermitian manifold of complex dimension n 2, ≥ f is a smooth real function on M. Then there is a unique real number b and a unique smoothreal functionu on M solving (1.5) Ckωk ωn k = ef+bωn n u ∧ − ω Γ (M), supu = 0. u k ∈ M We use the continuity method to solve the problem (1.5). The openness follows from implicitfunction theory. The closeness argument can be reduced to a prioriestimates up tothesecondbythestandardEvans-Krylovtheory. Actually,wecanderivethezeroorder estimateand thesecond orderestimateofsolutionsofequation (1.1) and thus usea blow up methodto obtainthegradient estimate. In [11], Tosatti-Weinkove derived the key zero order estimate by proving a Cherrier- type inequality which was originally proved in [1]. For equation (1.1), we can prove the similarCherrier-typeinequalitybuttheanalysisbecomesabit complicatedsinceω may u not be positive. Some inequalities for k th elementary symmetric functions in [2] are − needed. For the second order estimate, the main difficulty is that there are new terms of the form T D3u, where T is the torsion of ω and D3u represents the third derivatives ∗ of u. To control these terms, we use the auxiliary function due to Tosatti-Weinkove in [14]. Themaindifferenceisthatforequation(1.1)weneed tousesomelemmasfork th − elementary symmetricfunctionsprovedby Hou-Ma-Wu in[4]. Therestofthepaperisorganizedasfollows. Insection2,wegivesomepreliminaries. In section 3, the Cherrier-type inequality is derived , thus we obtain the C0 estimate. In section4, wewillprovethesecond orderestimatebya similarauxiliaryfunctionin [14]. Acknowledgment: I would like to thank Professor Xinan Ma for his encouragement, adviceand comments. I also thankProfessor Shengli Kongforcareful reading and many suggestions. HESSIANEQUATION 3 2. preliminaries Let (M,g)be a compact Hermitian manifold and let denotethe Chern connection of ∇ g. In this section we will give some preliminaries about the k th elementary symmetric − functionand thecommutationformulaofcovariantderivatives. 2.1. Elementary symmetric function. The k th elementary symmetric function is de- − fined by σ (λ) = λ λ , k i1 ··· ik X 1 i1< <ik n ≤ ··· ≤ where λ = (λ , ,λ ) Rn. Let λ a denotetheeigenvalues ofHermitian matrix a , 1 n i¯j i¯j ··· ∈ wedefine (cid:16) (cid:17) n o σ a = σ λ a . k i¯j k i¯j (cid:16) (cid:17) (cid:16) n o(cid:17) Thedefinitionofσ canbenaturallyextendedtoHermitianmanifold. Indeed,letA1,1(M,R) k bethespaceofsmoothreal (1,1)-formson M, forχ A1,1(M,R)wedefine ∈ n χk ωn k σ (χ) = ∧ − . k k ωn (cid:18) (cid:19) Definition 2.1. (2.1) Γ := λ Rn : σ (λ) > 0, j = 1, ,k . k j { ∈ ··· } Similarly,wedefineΓ on M asfollows k (2.2) Γ (M) := χ A1,1(M,Rn) : σ (χ) > 0, j = 1, ,k . k j { ∈ ··· } Furthermore, σ (λi ...i), with i ,...,i being distinct, stands for the r–th symmetric r 1 l 1 l | functionwithλ = = λ = 0. Formoredetailsaboutelementarysymmetricfunctions, i1 ··· il onecan seethelecturenotes[15]. To prove the C0 estimate, we need the following lemma of elementary symmetric functions. Lemma 2.2. Suppose that λ Γ ,3 k n and λ λ λ , then there exists a k 1 2 n ∈ ≤ ≤ ≥ ≥ ··· ≥ positiveconstantC dependingonlyon k andn, suchthatfor0 i k 2. ≤ ≤ − (2.3) λ λ λ Cσ (λ j), j1 j2 ··· ji ≤ i | 1 ≤ j1 < j2 < ··· ji ≤ n,(cid:12)(cid:12)(cid:12)jl , j,1 ≤ l (cid:12)(cid:12)(cid:12)≤ i,1 ≤ j ≤ n. Proof. Since n λ =σ (λ 12 k 1) > 0, p 1 | ··· − Xp=k and λ λ λ 1 2 n ≥ ≥ ··· ≥ 4 DEKAIZHANG then (2.4) λ (n k)λ ,k+1 p n. p k ≤ − ≤ ≤ (cid:12) (cid:12) We first prove the lemma fo(cid:12)r k(cid:12) = 3. In this case, it needs to prove that there exists a (cid:12) (cid:12) constantC suchthat λ Cσ (λ j), l 1 | | ≤ | for 1 j,l n and l , j. Indeed, σ (λ j) = λ +σ (λ jl), thus λ σ (λ j). Now,we 1 l 1 l 1 ≤ ≤ | | ≤ | assumeλ < 0,then l 4. By (2.4), wehave l ≥ λ (n 3)λ ,4 l n. l 3 | | ≤ − ≤ ≤ Since λ j Γ , by the proof in [2] which used the result in [7], there exists a constant θ 2 1 | ∈ such that σ (λ j) θ λ if j = 1 and σ (λ j) θ λ if 2 j n. TakingC = n 3, we 1 | ≥ 1 2 1 | ≥ 1 1 ≤ ≤ θ−1 then provethelemmaforthecasek = 3. Nextweprovethelemmaforthegeneral k,3 k n. ≤ ≤ If j > i, bytheresultin [15] σ (λ j) θ(n,k)λ λ. i 1 i | ≥ ······ Thuswehave λ λ λ =λ λ λ λ λ λ (n k)i qλi q j1 j2 ··· ji j1 ··· jq jq+1··· ji ≤ 1··· q − − k− (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (n(cid:12)(cid:12) k)i (cid:12) (cid:12) (n k)iλ(cid:12) λ (cid:12)− σ (λ j). 1 i i ≤ − ··· ≤ θ(n,k) | If j i, thensimilarly ≤ σ (λ j) θ(n,k)λ λ λ λ . i 1 j 1 j+1 i+1 | ≥ ··· − ··· Thuswehave λ λ λ =λ λ λ λ λ λ λ λ (n k)i qλi q j1 j2 ··· ji j1 ··· jq jq+1··· ji ≤ 1··· j−1 j+1··· q+1 − − k− (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (n k)i (cid:12) (cid:12) (n k)iλ(cid:12) λ λ (cid:12) λ − σ (λ j). 1 j 1 j+1 i+1 i ≤ − ··· − ··· ≤ θ(n,k) | (cid:3) Usingthislemma,weimmediatelyobtainthefollowinglemmawhichisakeyingredi- ent forprovinglemma3.2. Lemma 2.3. (2.5) k−2 √−1∂u∧∂¯u∧ωiu ∧Ti C k−2 √−1∂u∧∂¯u∧ωiu ∧ωn−i−1, (cid:12)(cid:12) ωn (cid:12)(cid:12) ≤ ωn Xi=0 (cid:12) (cid:12) Xi=0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) HESSIANEQUATION 5 ,where T isdefined asthecombinationsofω,∂ω,∂∂¯ω,moreprecisely i T = ωn i 3p 2q (√ 1)p(∂ω)p ∂¯ω p (√ 1)q ∂∂¯ω q i −− − ∧ − ∧ ∧ − 0 3pX+2q n i (cid:16) (cid:17) (cid:16) (cid:17) ≤ ≤ − Proof. For x M ,wechoosethecoordinatessuchthat ∈ n n ω(x) = dzj dz¯j,ω (x) = λ dzj dz¯j, u j ∧ ∧ Xj=1 Xj=1 and λ λ λ . 1 2 n ≥ ≥ ··· ≥ Thuswehave (2.6) k−2 √−1∂u∧∂¯u∧ωiu ∧Ti C k−2 u u λ λ λ (cid:12)(cid:12) ωn (cid:12)(cid:12) ≤ j | l¯| j1 j2 ··· ji Xi=0 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) Xi=0 1≤j1<·X··<ji≤n,,j,l(cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) k 2 n (cid:12) (cid:12) − 2 C u λ λ λ ≤ j j1 j2 ··· ji Xi=0 Xj=1 1 ≤ j1 <X··· < ji ≤ n (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) j , j l k 2 n − 2 C σ (λ j) u i j ≤ | Xi=0 Xj=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) =C k−2 √−1∂u∧∂¯u∧ωiu ∧ωn−i−1, ωn Xi=0 wherewehaveused thelemma2.1 inthelastinequality. (cid:3) 2.2. Commutationformulaofcovariantderivatives. Inlocalcomplexcoordinatesz , ,z , 1 n ··· wehave ∂ ∂ (2.7) g = g( , ), gi¯j = g 1 i¯j ∂zi ∂z¯j { } { i¯j}− FortheChern connection ,wedenotethecovariantderivativesas follows: ∇ (2.8) u = u,u = u,u = u i ∂ i¯j ∂ ∂ i¯jk ∂ ∂ ∂ ∇∂zi ∇∂z¯j∇∂zi ∇∂zk∇∂z¯j∇∂zi we use the following commutation formula for covariant derivativeson Hermitian mani- foldswhich can befoundedin [14]: (2.9) u = u Tpu i¯jl l¯ji − li p¯j u = u +u R q pi¯j p¯ji q i¯jp u = u T¯q u . ip¯¯j i¯jp¯ − jp iq¯ 6 DEKAIZHANG (2.10) u = u +u R p u R p Tpu T¯p u TpT¯q u i¯jlm¯ lm¯i¯j p¯j lm¯i − pm¯ i¯jl − li pm¯¯j − mj lp¯i − li mj pq¯ Forthedetailswerecommendthereaderto thereference [14]. 3. zero order estimate In this section we derive the zero order estimate by proving a Cherrier-type inequality and thelemmasin [11]. Sincetheconstantb is inTheorem1.1 satisfies b sup f +C, | | ≤ | | whereC isapositiveconstantdependingonlyon(M,ω). Thus,wewillassumeb = 0for convenience. Theorem 3.1. LetubeasolutionofTheorem1.1. ThenthereexistsaconstantC depend- ingonlyon(M,ω)and sup f suchthat | | M sup u C. | | ≤ M Due to Tosatti-Weinkove’s results, the zero order estimate can be reduced to derive a Cherrier-typeinequalitywhichwasfirstlyprovedinCherrier’s paper[1]. FortheHessian equation, the analysis becomes a bit complicated in the lack of the positivity of ω . Re- u cently1, Sun [8] also proved the following lemma for k = 2 and k 3 under some extra ≥ conditions. Lemma 3.2. There exist constants p and C depending only on (M,ω) such that for any 0 p p 0 ≥ Z |∂e−2pu|2gωn ≤ CpZ e−puωn M M Proof. By theequation,wehave ωk ωn k ωn = (ef 1)ωn C ωn, u ∧ − − − ≤ 0 whereC isa constantdependingonlyon f. 0 Ontheotherhand, (3.1) ωk ωn k ωn = ωk ωk ωn k = √ 1∂∂¯u α, u ∧ − − u − ∧ − − ∧ (cid:16) (cid:17) k whereα = ωi 1 ωn i. u− ∧ − i=1 P 1TheauthorindependentlyprovedtheC0estimatebefore[8]waspostedonarXiv. HESSIANEQUATION 7 Nowmultiplyboth sidesin(3.1)bye pu and integrateby parts, − (3.2) C e puωn e pu√ 1∂∂¯u α 0 − − Z ≥Z − ∧ M M = ∂e pu√ 1∂¯u α+ e pu√ 1∂¯u ∂α − − −Z − ∧ Z − ∧ M M 1 =p e pu√ 1∂u ∂¯u α √ 1∂¯e pu ∂α − − Z − ∧ ∧ − p Z − ∧ M M 1 =p e pu√ 1∂u ∂¯u α+ e pu√ 1∂¯∂α − − Z − ∧ ∧ p Z − M M :=A+B, wherewedenote k A =p e pu√ 1∂u ∂¯u ωi 1 ωn i Z − − ∧ ∧ u− ∧ − 1 M Xi=1  B = e pu√ 1∂¯∂α. − p Z − M Wewillusetheterm A tocontrol theterms B. Direct calculationgives k 1 − ∂α = n ωi 1 ωn i 1 ∂ω+(n k)ωk 1 ωn k 1 ∂ω u− ∧ −− ∧ − u− ∧ − − ∧ Xi=1 ∂¯∂α =(n k)(n k 1)ωk 1 ωn k 2 ∂¯ω ∂ω+(n k)ωk 1 ωn k 1 ∂¯∂ω − − − u− ∧ − − ∧ ∧ − u− ∧ − − ∧ +(n k)(n+k 1)ωk 2 ωn k 1 ∂¯ω ∂ω − − u− ∧ − − ∧ ∧ k 3 k 2 +n(n 1) − ωi ωn i 3 ∂¯ω ∂ω+n − ωi ωn i 2 ∂¯∂ω − u ∧ −− ∧ ∧ u ∧ −− ∧ Xi=0 Xi=1 Therefore, wehave (n k)(n k 1) B = − − − √ 1e puωk 1 ωn k 2 ∂¯ω ∂ω p Z − − u− ∧ − − ∧ ∧ M (n k) + − √ 1e puωk 1 ωn k 1 ∂¯∂ω p Z − − u− ∧ − − ∧ M (n+k 1)(n k) + − − √ 1e puωk 2 ωn k 1 ∂¯ω ∂ω p Z − − u− ∧ − − ∧ ∧ M k 3 k 2 + n(n−1) − √ 1e puωi ωn i 3 ∂¯ω ∂ω+ n − √ 1e puωi ωn i 2 ∂¯∂ω p Z − − u ∧ −− ∧ ∧ p Z − − u ∧ −− ∧ Xi=0 M Xi=1 M 8 DEKAIZHANG When k = 2,theterm B justbecomes (3.3) (n 2)(n 3) (n 2) B = − − √ 1e puω ωn 4 ∂¯ω ∂ω+ − √ 1e puω ωn 3 ∂¯∂ω − u − − u − p Z − ∧ ∧ ∧ p Z − ∧ ∧ M M (n+1)(n 2) + − √ 1e puωn 3 ∂¯ω ∂ω − − p Z − ∧ ∧ M (n 2)(n 3) (n 2) = − − √ 1e pu√ 1∂∂¯u ωn 4 ∂¯ω ∂ω+ − √ 1e pu√ 1∂∂¯u ωn 3 ∂¯∂ω − − − − p Z − − ∧ ∧ ∧ p Z − − ∧ ∧ M M 2(n 1)(n 2) (n 2) + − − √ 1e puωn 3 ∂¯ω ∂ω+ − √ 1e puωn 2 ∂¯∂ω − − − − p Z − ∧ ∧ p Z − ∧ M M (n 2)(n 3) − − √ 1e pu√ 1∂∂¯u ωn 4 ∂¯ω ∂ω − − ≥ p Z − − ∧ ∧ ∧ M (n 2) C + − √ 1e pu√ 1∂∂¯u ωn 3 ∂¯∂ω 1 e puωn − − − p Z − − ∧ ∧ − p Z M M We next use integration by parts again to deal with the first term and second term on the righthand sideoftheaboveequality. Indeed, √ 1e pu√ 1∂∂¯u ωn 4 ∂¯ω ∂ω − − Z − − ∧ ∧ ∧ M (3.4) =p √ 1e pu√ 1∂u ∂¯u ωn 4 ∂¯ω ∂ω+ √ 1e pu√ 1∂¯u ∂(ωn 4 ∂¯ω ∂ω) − − − − Z − − ∧ ∧ ∧ ∧ Z − − ∧ ∧ ∧ M M 1 =p √ 1e pu√ 1∂u ∂¯u ωn 4 ∂¯ω ∂ω+ √ 1e pu√ 1∂¯∂(ωn 4 ∂¯ω ∂ω) − − − − Z − − ∧ ∧ ∧ ∧ p Z − − ∧ ∧ M M C pC e pu√ 1∂u ∂¯u ωn 1 1 e puωn 1 − − − ≥− Z − ∧ ∧ − p Z M M C C A 1 e puωn 1 − ≥− − p Z M Thesimilarcalculationgives C (3.5) √ 1e pu√ 1∂∂¯u ωn 3 ∂¯∂ω C A 1 e puωn − − 1 − Z − − ∧ ∧ ≥ − − p Z M M Inserting(3.4)and (3.5) into(3.3), wehave C C B 1A 1 e puωn − ≥ − p − p Z M HESSIANEQUATION 9 By (3.2)andchoosing p = 2C +1,weobtainfor p p 0 1 0 ≥ A C C (1 1)A ( 1 +C ) e puωn (C +1) e puωn 0 − 0 − 2 ≤ − p ≤ p Z ≤ Z M M By (3.7)inthenextpage, wethusprovethelemma. Forthegeneralk,3 k n,weclaimthatthereexistconstantsC dependingonlyon 1i ≤ ≤ n,k,(M,ω)suchthat thefollowingholdsfor0 i k 1, ≤ ≤ − k 2 (3.6) e puωi T pC − e pu√ 1∂u ∂¯u ωj ωn j 1 C e puωn Z − u ∧ i ≥ − 1i Z − − ∧ ∧ u ∧ − − − 1iZ − M Xj=0 M M ,whereT is defined as thecombinationsofω,∂ω,∂∂¯ω,moreprecisely i T = ωn i 3p 2q (√ 1)p(∂ω)p ∂¯ω p (√ 1)q ∂∂¯ω q i −− − ∧ − ∧ ∧ − 0 3pX+2q n i (cid:16) (cid:17) (cid:16) (cid:17) ≤ ≤ − Weusetheclaim(3.6)toprovethelemma k C B C e pu√ 1∂u ∂¯u ωk i ωn+i k 1 1 e puωn ≥− 1 Z − − ∧ ∧ u− ∧ − − − p Z − Xi=2 M M C C 1A 1 e puωn − ≥− p − p Z M Thuswehave C C (1 1)A ( 1 +C ) e puωn 0 − − p ≤ p Z M Nowwechoose p = 2C +1, thenforany p p , 0 1 0 ≥ p2 e pu√ 1∂u ∂¯u ωn 1 2p(C +1) e puωn − − 0 − Z − ∧ ∧ ≤ Z M M Thereforewehave np2 (3.7) Z |∂e−2pu|2gωn = 4 Z e−pu√−1∂u∧∂¯u∧ωn−1 M M np(C +1) 0 e puωn = pC e puωn − − ≤ 2 Z Z M M Now,weprovetheclaim(3.6)byinductiveargument. 10 DEKAIZHANG Wheni = 1,we have e puω T = e puω T + e pu√ 1∂∂¯u T − u 1 − 1 − 1 Z ∧ Z ∧ Z − ∧ M M M = e puω T ∂e pu √ 1∂¯u T + e pu√ 1∂¯u ∂T − 1 − 1 − 1 Z ∧ −Z ∧ − ∧ Z − ∧ M M M 1 = e puω T + p e pu√ 1∂u ∂¯u T √ 1∂¯e pu ∂T − 1 − 1 − 1 Z ∧ Z − ∧ ∧ − p Z − ∧ M M M 1 =p e pu√ 1∂u ∂¯u T + e puω T e pu √ 1∂∂¯T − 1 − 1 − 1 Z − ∧ ∧ Z ∧ − p Z ∧ − M M M C p e pu√ 1∂u ∂¯u T C e puωn 1 − 1 1 − ≥ − Z − ∧ ∧ − Z M M Supposethat theclaimis true forl i 1, we willprovethatthe claimis also truefor ≤ − l = i. Indeed, e puωi T = e puωi 1 ω T + e pu√ 1∂∂¯u ωi 1 T Z − u ∧ i Z − u− ∧ ∧ i Z − − ∧ u− ∧ i M M M = e puωi 1 ω T + p e pu√ 1∂u ∂¯u ωi 1 T Z − u− ∧ ∧ i Z − − ∧ ∧ u− ∧ i M M + e pu∂¯u √ 1∂ ωi 1 T Z − ∧ − u− ∧ i M (cid:16) (cid:17) :=A +A +A i,1 i,2 i,3 By theinduction, A = e puωi 1 ω T i,1 Z − u− ∧ ∧ i M k 2 pC (n,k,ω) − e pu√ 1∂u ∂¯u ωj ωn j 1 C (n,k,ω) e puωn ≥− 1i Z − − ∧ ∧ u ∧ − − − 1i Z − Xj=0 M M By theinequality(2.5)inlemma2.3, wehave (3.8) A = p e pu√ 1∂u ∂¯u ωi 1 T pC e pu√ 1∂u ∂¯u ωi 1 ωn i i,2 Z − − ∧ ∧ u− ∧ i ≥ − 2iZ − − ∧ ∧ u− ∧ − M M

See more

The list of books you might like