Logout succeed
Logout succeed. See you again!

Hochschild homology and cohomology of admissible subcategories PDF
Preview Hochschild homology and cohomology of admissible subcategories
Hochschild homology and cohomology of admissible subcategories Alexander Kuznetsov Steklov Math Institute Moscow, Russia Hochschildhomologyandcohomologyofadmissiblesubcategories–p.1/27 Plan a reminder on Hochschild (co)homology in different contexts; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 Plan a reminder on Hochschild (co)homology in different contexts; a reminder on admissible subcategories; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 Plan a reminder on Hochschild (co)homology in different contexts; a reminder on admissible subcategories; a definition of the Hochschild (co)homology of admissible subcategories; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 Plan a reminder on Hochschild (co)homology in different contexts; a reminder on admissible subcategories; a definition of the Hochschild (co)homology of admissible subcategories; properties of Hochschild (co)homology of admissible subcategories; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 Plan a reminder on Hochschild (co)homology in different contexts; a reminder on admissible subcategories; a definition of the Hochschild (co)homology of admissible subcategories; properties of Hochschild (co)homology of admissible subcategories; computation of Hochschild (co)homology of admissible subcategories; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 Plan a reminder on Hochschild (co)homology in different contexts; a reminder on admissible subcategories; a definition of the Hochschild (co)homology of admissible subcategories; properties of Hochschild (co)homology of admissible subcategories; computation of Hochschild (co)homology of admissible subcategories; examples. Hochschildhomologyandcohomologyofadmissiblesubcategories–p.2/27 EndFun( ) id HH ( ) = Ext (id ; id ) EndFun( ) EndFun( ) HH ( ) = Tor (id ; id ) EndFun( ) Tor Ext EndFun( ) Hochschild (co)homology Let C be a category; Hochschildhomologyandcohomologyofadmissiblesubcategories–p.3/27 id HH ( ) = Ext (id ; id ) EndFun( ) EndFun( ) HH ( ) = Tor (id ; id ) EndFun( ) Tor Ext EndFun( ) Hochschild (co)homology Let C be a category; C — the category of C-endofunctors; EndFun( ) Hochschildhomologyandcohomologyofadmissiblesubcategories–p.3/27 HH ( ) = Ext (id ; id ) EndFun( ) EndFun( ) HH ( ) = Tor (id ; id ) EndFun( ) Tor Ext EndFun( ) Hochschild (co)homology Let C be a category; C — the category of C-endofunctors; EndFun( ) — identity endofunctor; C id Hochschildhomologyandcohomologyofadmissiblesubcategories–p.3/27