loading

Logout succeed

Logout succeed. See you again!

ebook img

Indecomposable modules of solvable Lie algebras PDF

file size0.17 MB

Preview Indecomposable modules of solvable Lie algebras

INDECOMPOSABLE MODULES OF SOLVABLE LIE ALGEBRAS PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN 7 1 0 Abstract. We classify all uniserial modules of the solvable Lie algebra g = hxi⋉V, 2 where V is an abelian Liealgebra over an algebraically closed field ofcharacteristic 0 b andxisanarbitraryautomorphismofV. e F 8 1. Introduction ] T Let F be analgebraicallyclosedfieldofcharacteristic0. Allvectorspaces, including R allLiealgebrasandtheirmodules,areassumedtobefinitedimensionaloverF. . Recallthatamoduleissaidtobeindecomposableifitcannotbedecomposedasthedi- h rectsumoftwonon-trivialsubmodules. Naturally,knowingallindecomposablemodules t a of a given Lie algebra would provide a complete description of all its modules. Unfor- m tunately, the problem of classifying all indecomposable modules of a given Lie algebra [ -thatisnotsemisimpleorone-dimensional-isvirtuallyunsolvable,eveninthecaseofthe two-dimensional abelian Lie algebra, as observed in a celebrated paper by Gelfand and 2 v Ponomarev[GP]. 4 In spite of this fact, many types of indecomposable modules of non-semisimple Lie 8 algebras have been recently classified, see for example [CGS, CMS, CS, CS1, D, DdG, 0 DP,DR,P] 0 Inallthese papersthecentralidea isto considerparticularclasses ofindecomposable 0 . modulesforwhichacompleteclassificationcanbeachieved.Besidestheirreduciblemod- 2 ules,thesimplesttypeofindecomposablemoduleis,inacertainsense,theuniserialone. 0 Thisisa modulehavingauniquecompositionseries, i.e. anon-zeromodulewhosesub- 7 1 modulesformachain. Alternatively,suchmodulescanbedefinedasfollows. : LetgbeagivenLiealgebraandletU beanon-zerog–module.Thesocleseries v i 0=soc (U)⊂soc (U)⊂···⊂soc (U)=U X 0 1 k r ofU isinductivelydefinedbydeclaringsoci(U)/soci−1(U)tobethesocleofU/soci−1(U), a thatis, thesum ofallirreduciblesubmodulesofU/soc (U), for1 ≤ i ≤ k. ThenU is i−1 uniserialifandonlyifthesocleseriesofU hasirreduciblefactors. Inthelastyears,theclassificationoftheuniserialmodulesofimportantclassesofsolv- ableandperfectLiealgebrashasbeenachievedinvariousresearchpapers[CGS,CS,CS1, Pi, C]. In particular, [Pi] and [C] classify a wider class of modules, called cyclic in [Pi] andperfectcyclicin[C],overtheperfectLiealgebrassl(2)⋉F2 andsl(n+1)⋉Fn+1,for F =C,respectively. Theaimofthispaperistoproceedfurtherinthestudyofuniserialmodules. Weshall, indeed, classify the uniserial modules of a distinguished class of solvable Lie algebras, namely those of the form g = hxi ⋉ V, where V is an abelian Lie algebra and x is an arbitraryautomorphismofV. 2010MathematicsSubjectClassification. 17B10,17B30. Keywordsandphrases. uniserialmodule;indecomposablemodule;Clebsch-Gordanformula. 1 2 PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN A properidealaof g isofthe forma = W, whereW isan x-invariantsubspaceof V. Thus, either W = V and g/a (cid:27) hxi is one-dimensional, or else g/a (cid:27) hxi ⋉ V, where V =V/W ,(0)andxistheautomorphismthatxinducesonV. Weknowfrom[CS]alluniserialmodulesoveranabelianLiealgebraaswellasalluni- serialg-moduleswhenxisdiagonalizable.Thus,itsufficestoclassifyallfaithfuluniserial g-moduleswhenxisnotdiagonalizable.Inthisregard,ourmainresultsareasfollows. In §2 we construct a family of non-isomorphic faithful uniserial representations of g whenxactsonV viaasingleJordanblockofsizen>1. Thisfamilyconsistsofallmatrix representations (1.1) R →gl(n+1), R →gl(n+1), R →gl(n+1), α,k,X α,n α,1 where α∈ F, 1<k <n, X ∈ M , k−1,n−k aswellasthematrixrepresentations (1.2) R →gl(n+2), α,a whichexistonlyforoddn,andwhere α∈F, a=(a ,...,a ), a =1, a =0foralleveni. 1 n 1 i In §3, we show that if x acts on V via a single Jordan block of size n > 1, then ev- ery faithful uniserial g-module is isomorphic to one and only one of the representations appearingin(1.1)and(1.2). In §4 we deal with the general case. By our results from §3, we may assume that x has e Jordan blocks, where e > 1. Moreover, as indicated above, we may also assume that x isnotdiagonalizable. Underthese assumptions. Theorem4.1givesnecessaryand sufficientconditionsforgtohaveafaithfuluniserialmoduleandclassifiesallsuchmodules whenevertheseconditionsaresatisfied. Indeed,let (1.3) V =V ⊕···⊕V 1 e beadecompositionofV intoindecomposableF[x]-submodules(thismeansthatxactson eachV viaaJordanblock)ofdimensions i n=n ≥···≥n , 1 e wheren > 1because xisnotdiagonalizable. Foreach1 ≤ i ≤ e,considerthesubalgebra g =hxi⋉V ofg,wherex = x| . i i i i Vi SupposethatghasafaithfuluniserialrepresentationR:g→gl(d).Thentherestriction R :g →gl(d)isalreadyuniserial.Inparticular, 1 1 d =n+1ord =n+2. In the first case, R is isomorphic to a unique R , the automorphism x has a single 1 α,k,X eigenvalueλ,andtheJordandecompositionofxis (1.4) Jn(λ)⊕Jn2(λ)⊕···⊕Jne(λ), where (1.5) n ≤n−2, n ≤n−4, n ≤n−6,..., n ≤n−2(e−1), 2 3 4 e and (1.6) e≤min{k,n+1−k}. INDECOMPOSABLEMODULESOFSOLVABLELIEALGEBRAS 3 In the second case, R is isomorphicto a uniqueR , n is odd, the automorphism x has 1 α,a twoeigenvaluesλand2λ,andtheJordandecompositionofxis (1.7) Jn(λ)⊕J1(2λ), sothate=2andn =1. 2 Conversely,if x hasa single eigenvalue,1 < k < n, and(1.5)-(1.6) are satisfied, then R can be extendedto a faithfuluniserial representationof g. In fact, let M be α,k,X k,n+1−k subspaceofgl(n+1)consistingofallmatrices 0 N , N ∈ M . 0 0 ! k×n+1−k LetvbeageneratoroftheF[x]-moduleV andset 1 Jk(α) 0 A=R (x)= ∈gl(n+1), E =R (v)∈M . α,k,X 0 Jn+1−k(α−λ) ! α,k,X k,n+1−k Then the extensions of R to a faithful uniserial representation of g are given by all α,k,X possibleF[t]-monomorphismsV →M suchthatv→E,wheretactsviaad x−λ1 k,n+1−k g g on V and via ad A − λ1 on M . Moreover, all such extensions produce gl(n+1) gl(n+1) k,n+1−k non-isomorphicrepresentationsofg. Illustrativeexamplesareprovidedin§5. Likewise, if x hasJordandecomposition(1.7), then R can be extendedto a faithful α,a uniserialrepresentationofg.Wedetermineallsuchextensionsandprovethattheyproduce non-isomorphic representations of g (this case is much simpler than the above and no examplesarerequired). Finally, a necessary and sufficient condition for g to have a faithful uniserial repre- sentation is that x has Jordan decomposition (1.4) and (1.5) holds, or that x has Jordan decomposition(1.7)andnisodd. Perhapssurprisingly, the representationtheory of sl(2), and in particularthe Clebsch- Gordanformula,playsadecisiveroleinourstudyandclassificationofuniserialg-modules. 2. Constructionofuniserialrepresentations Given p ≥ 1 and α ∈ F, we write J (α) (resp. Jp(α)) for the lower (resp. upper) p triangularJordanblockofsize p andeigenvalueα. We also let Ei,j ∈ gl(p)standforthe matrixwithentry(i, j)equalto1andallotherentriesequalto0. Wesupposethroughoutthissectionthatg=hxi⋉V,whereV isanabelianLiealgebra andx∈gl(V)actsonV viaasingle,lowertriangular,Jordanblock,say J (λ),relativetoa n basisv ,...,v ofV. Thecaseλ = 0isallowed. Themultiplicationtableforgrelative 0 n−1 toitsbasisx,v ,...,v is: 0 n−1 (2.1) [x,v ]=λv +v ,[x,v ]=λv +v ,...,[x,v ]=λv . 0 0 1 1 1 2 n−1 n−1 Wemaytranslate(2.1)into (2.2) (ad x−λ1 )kv =v , 0≤k≤n−1, g g 0 k and (2.3) (ad x−λ1 )nv =0. g g 0 Proposition2.1. Givenpositiveintegers p,q,letM besubspaceofgl(p+q)consisting p,q ofallmatrices 0 N N = , N ∈ M . 0 0 ! p×q b 4 PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN Givenα,λ∈F,set A= Jp(α)⊕Jq(α−λ). Letθstandfortheendomorphismad A−λ1 ofgl(p+q)restrictedtoitsinvariant gl(p+q) gl(p+q) subspaceM . Thenθisnilpotentwithelementarydivisors p,q tp+q−1,t(p+q−1)−2,t(p+q−1)−4,...,t(p+q−1)−2z, where z=min{p−1,q−1}. Moreover,givenanyN ∈ M ,theminimalpolynomialofN withrespecttoθistp+q−1 if p×q andonlyifN ,0. p,1 b Proof. For a ≥ 0, let V(a) stand for the irreduciblesl(2)-modulewith highest weight a. TheClebsch-Gordanformulastatesthat (2.4) V(a)⊗V(b)(cid:27)V(a+b)⊕V(a+b−2)⊕V(a+b−4)⊕···⊕V(a+b−2r), where r =min{a,b}. Let 0 1 1 0 0 0 e= ,h= , f = 0 0 ! 0 −1 ! 1 0 ! standforthecanonicalbasisofsl(2). Itiswell-knownthateactsnilpotentlyonV(a)with asingleelementarydivisor,namelyta+1. ItfollowsfromtheClebsch-Gordanformulathat eactsnilpotentlyonV(a)⊗V(b)withelementarydivisors ta+b+1,t(a+b+1)−2,t(a+b+1)−4,...,t(a+b+1)−2r. Fora≥0,letR :sl(2)→gl(a+1)bethematrixrepresentationaffordedbyV(a)givenby a (2.5) R (h)=diag(a,a−2,...,−a+2,−a), a (2.6) R (e)= Ja+1(0), a (2.7) R (f)=diag(0,a,2(a−1),3(a−2),...,3(a−2),2(a−1),a)J (0). a a+1 Now V(a)⊗V(b)(cid:27)V(a)∗⊗V(b)(cid:27)Hom(V(a),V(b)), where (2.8) (y·φ)(v)=y·φ(v)−φ(y·v), y∈sl(2),φ∈Hom(V(a),V(b)),v∈V. Itfollowsthat (2.9) V(a)⊗V(b)(cid:27)M , a+1,b+1 where 0 N R (y) 0 0 N (2.10) y· = a , , y∈sl(2). 0 0 ! " 0 Rb(y) ! 0 0 !# Ontheotherhand,lettingB= Jp(0)⊕Jq(0),wereadilyverifythat (ad B)N =(ad A−λ1 )N, N ∈ M , gl(p+q) gl(p+q) gl(p+q) p×q whichmeansthatθistherestbrictionofadgl(p+q)BtoMp,qb. Settinga= p−1andb=q−1 andusing(2.6)aswellas(2.10),wededucethatθisnothingbuttheactionofeonM . a+1,b+1 ThestatedelementarydivisorsforθnowfollowfromthoseoftheactionofeonV(a)⊗V(b). INDECOMPOSABLEMODULESOFSOLVABLELIEALGEBRAS 5 Using (2.5) and (2.10) we find that, for 0 ≤ i ≤ r, the h-eigenspace of M with p,q eigenvalue−(a+b)+2i,sayS(i),consistsofallQsuchthattheentriesofQoutsideofits ithlowerdiagonalareequalto0. Herethe0thlowerdiagonalconsistsofposition(p,1), b the 1st lower diagonalof positions (p,2),(p−1,1), the 2nd lower diagonalof positions (p,3),(p−1,2),(p−2,1),andsoon. EachlowestweightvectorofM generatesanirreduciblesl(2)-submodule.Inviewof p,q themultiplicity-freedecomposition(2.4)andtheisomorphism(2.9),weseethatforeach 0≤i≤r,thereisoneandonlyone0, E(i)∈S(i),uptoscaling,suchthat (2.11) b fd·E(i)=0. LettingW(i)bethesl(2)-submodulegeneradtedbyE(i),wehave (2.12) Mp,q =W(0)⊕···d⊕W(r). GivenanarbitraryN ∈ M ,letuswriteN intermsof(2.12). Wehave p×q N =w(0)+w(1)··b·+w(r), w(i)∈W(i), where, b w(0)=α E(0)+α e·E(0)+···+α ea+b·E(0), α ∈ F. 0 1 a+b i FromthefirstpartoftheTheorem,weknowthat, relativetotheactionofe, theminimal d d d polynomialof E(0) is ta+b+1, while ta+b−1 annihilates all w(i), i > 0. It follows that the minimal polynomialof N is ta+b+1 if and only if α , 0. On the other hand, given that d 0 E(i)∈S(i),itfollowsthateveryE(i),i>1,hasentry(p,1)equalto0,whereasentry(p,1) b ofE(0)isnot0.Moreover,using(2.6)and(2.10)wefindthatifP=e·Q,thenentry(p,1) d ofPisequalto0foranyQ. Thus,N ,0ifandonlyifα ,0,asrequired. (cid:3) p,1 0 b b Proposition2.2. Givenα ∈ F, positiveintegers p,q,and N ∈ M suchthat N , 0, p×q p,1 considerthelinearmapR=R :g→gl(p+q)givenby α,p,q,N Jp(α) 0 x7→A= 0 Jq(α−λ) ! and 0 N v 7→(ad A−λ1 )k , 0≤k ≤n−1. k gl(p+q) gl(p+q) 0 0 ! ThenRisarepresentationofgifandonlyif p+q−1 ≤ n,inwhichcaseRisuniserial. Moreover,Risafaithfulrepresentationifandonlyif p+q−1=n. Proof. Byconstruction,Rpreservesthefollowingrelationsofg: [v,v ]=0, (ad x−λ1 )kv =v , 0≤k≤n−1. i j g g 0 k On the other hand, due to Proposition 2.1, (ad A − λ1 )nN = 0 if and only if gl(p+q) gl(p+q) p+q−1≤n,whichmeansthatRpreservesthelastdefiningrelationofg,namely b (ad x−λ1 )nv =0, g g 0 if and only if p+q−1 ≤ n. Thus, condition p+q−1 ≤ n alone determines whether R is a representationor not. Suppose that indeed p+q−1 ≤ n. It is obviousthat R is uniserial. Moreover,R(v ),...,R(v )arelinearlyindependentifandonlyiftheminimal 0 n−1 polynomialofNwithrespecttoad A−λ1 hasdegreen. ByProposition2.1,this gl(p+q) gl(p+q) happensifandonlyif p+q−1=n. (cid:3) b 6 PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN Givenα∈F,1≤k≤n,andX ∈ M ,weset p=k,q=n+1−kand k−1,n−k 0 X N = ∈ M . 1 0 ! k,n+1−k ThenProposition2.2ensuresthat R =R :g→gl(n+1) α,k,X α,p,q,N is a faithfuluniserial representationof g. In the extreme cases k = n and k = 1 there is noX,andN isrespectivelyequalto 0 .  01.. ∈ Mn×1and(1,0,...,0)∈ M1×n. ThecorrespondingrepresentationswillberespectivelydenotedbyR andR α,n α,1 Givenanyα∈ Fanda=(a ,...,a )∈Fnsuchthata =1,weconsiderthelinearmap 1 n 1 R :g→gl(n+2)definedasfollows: α,a α 0 0 x7→A= 0 Jn(α−λ) 0 ,  0 0 α−2λ  0 a 0 vk 7→(adgl(n+2)A−λ1gl(n+2))k 0 0 en , 0≤k ≤n−1, where{e ,...,e }isthecanonicalbasisofthe0col0umn0spaceFn. 1 n Lemma2.3. R isarepresentationofgifandonlyifnisoddanda =0foralleveni,in α,a i whichcaseR isuniserial. α,a Proof. Bydefinition,R preservesrelations(2.2)and(2.3).WenextdeterminewhenR α,a α,a preservesrelations[v,v ]=0. LettingN = Jn(0),wehave i j 0 a 0 0 (−1)kaNk 0 (adgl(n+2)A−λ1gl(n+2))k 0 0 en = 0 0 Nken , 0≤k≤n−1. Thus[R(v ),R(v )]=0iff(−01)ka0Nk+0je=(−10)jaNk+j0e iffa 0 =0fork+ jodd.Since k j n n n−k−j a =1,thelastconditionisequivalenttonoddanda =0,foranys. Thisprovesthefirst 1 2s assertion.Asuniserialityisclear,theproofiscomplete. (cid:3) Finally, in the extreme case n = 1, given any α ∈ F and ℓ ≥ 2 we have the faithful uniserialrepresentationT :g→gl(ℓ)givenby α,ℓ x7→diag(α,α−λ,...,α−(ℓ−1)λ), v 7→ Jℓ(0). 0 Definition2.4. Givenpositiveintegersℓ,d,d ,...,d suchthatd +···+d =dandℓ>1, 1 ℓ 1 ℓ andamatrixA ∈ M ,weconsiderAaspartitionedintoℓ2 blocksA(i, j) ∈ M . Wesay d di×dj thatAisblockuppertriangularifA(i, j)=0foralli> j,andstrictlyblockuppertriangular ifA(i, j)=0foralli≥ j. If0≤i≤ℓ−1,bytheithblocksuperdiagonalofAwemeanthe ℓ−iblocksA(1,1+i),A(2,2+i),...,A(ℓ−i,ℓ). INDECOMPOSABLEMODULESOFSOLVABLELIEALGEBRAS 7 Lemma2.5. Givenpositiveintegersℓ,d1,...,dℓ,withℓ>1,setJi = Jdi(0),1≤i≤ℓ,and letGbethesubgroupofGL(d)consistingofallX ⊕···⊕X suchthatX ∈U(F[J]).Let 1 ℓ i i E ∈ M bestrictlyblockuppertriangular,withdiagonalblocksofsizesd ×d ,...,d ×d . d 1 1 ℓ ℓ Let E ∈ M ,...,E ∈ M be the blocksin the first block superdiagonalof E, 1 d1×d2 ℓ−1 dℓ−1×dℓ andsupposethatthebottomleftcornerentryofeachE isnon-zero. i Then E isG-conjugateto a matrix H suchthateachofthe blocks H ,...,H in the 1 ℓ−1 first block superdiagonal of H has first column equal to the last canonical vector, and H haslastrowequaltothefirstcanonicalvector. Likewise, E isalsoG-conjugatetoa ℓ−1 matrix H such thateach ofthe blocks H ,...,H in the first block superdiagonalof H 1 ℓ−1 haslastrowequaltothefirstcanonicalvector,andthefirstcolumnof H isequaltothe 1 lastcanonicalvector. Proof. RecallthatA ∈ F[Jp(0)]ifandonlyifAisuppertriangularandallitssuperdiago- nalshaveconstantvalue.Forinstance,atypicalelementofA∈F[J4(0)]hastheform α β γ δ 0 α β γ (2.13) A= . It is clear that the unit groupof F[Jp(000)] ac00ts trα0ansαβitivelyfrom the left (right) on the set ofcolumn(row)vectorsofFp thathavenon-zerolast(first)entry. Moreover,itisequally clearthatifU ∈ U(F[Jp(0)])and B ∈ M (resp. B ∈ M )thenthefirstcolumn(resp. q×p p×q lastrow)of BU (resp. UB)isthatof Bscaledbya non-zeroconstant. Itfollowsatonce fromtheseconsiderationsthatwecanfindX ,...,X (resp. X ,...,X )sothatforanyX 1 ℓ−1 2 ℓ ℓ (resp. X )theresultingX ∈GwillconjugateE intoamatrixH suchthatthefirstcolumn 1 (resp. last row) of every H is equal to a non-zeroscalar multiple, say by α, of the last i i (resp. first)canonicalvector. MakingasecondselectionofscalarmatricesY ,...,Y and 1 ℓ conjugatingHbytheresultingY =Y ⊕···⊕Y ,wecanmakeallα =1above.Finally,by 1 ℓ i suitablychoosingX (resp. X )withwith1’sonthediagonalandtakingallotherX =1 , ℓ 1 i di we can makethe last row (resp. firstcolumn)of H (resp. H ) equalto the first (resp. ℓ−1 1 last)canonicalvector. (cid:3) Proposition2.6. Supposeλ,0andn>1. ThentherepresentationsR ,R ,R and α,k,X α,n α,1 R arenon-isomorphictoeachother. α,a Proof. Considering the eigenvalues of the image of x as well as their multiplicities, the only possible isomorphisms are easily seen to be between R and R , or R and α,k,X α,k,Y α,a R . α,b SupposefirstT ∈GL(n+1)satisfies TR (y)T−1 =R (y), y∈g. α,k,X α,k,Y ThenT commuteswithR (x)= Jk(α)⊕Jn+1−k(α−λ),andthereforeT =T ⊕T ,where α,k,X 1 2 T (resp. T )isapolynomialinJk(0)(resp. Jn+1−k(0))withnon-zeroconstantterm. Thus 1 2 TR (v )T−1 =R (v ) α,k,X 0 α,k,Y 0 translatesinto 0 X 0 Y (2.14) T = T 1 1 0 ! 1 0 ! 2 Explicitly writing T and T , as in (2.13), we infer from (2.14) that T = α1 = T , 1 2 1 n+1 2 whenceX =Y. 8 PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN SupposenextS ∈GL(n+2)satisfies SR (y)S−1 =R (y), y∈g. α,a α,b Asabove,S = J1(β)⊕S ⊕J1(γ),whereS isapolynomialinJn(0)withnon-zeroconstant 2 2 termandβ,γarenon-zero,butthen SR (v )=R (v )S α,a 0 α,b 0 forcesS tobeanon-zeroscalarmatrix,whencea=b. (cid:3) 3. Classificationofuniserialrepresentations Lemma3.1. LetT :h→kbeahomomorphismofLiealgebras.Then T((ad y−µ1 )kz)=(adT(y)−µ1)kT(z), y,z∈h,µ∈ F,k≥0. h h k k Proof. Thisfollowseasilybyinduction. (cid:3) Theorem3.2. ConsidertheLiealgebrag=hxi⋉V,whereVisanabelianLiealgebraand x ∈ GL(V)actsonV viaasingleJordanblock J (λ),λ , 0. LetRbeafaithfuluniserial n representationofg. Then (a)Ifn>1thenRisisomorphictooneandonlyoneoftherepresentationsR ,R , α,k,X α,n R ,R . α,1 α,a (b)Ifn=1thenRisisomorphictooneandonlyoneoftherepresentationsT . α,ℓ Proof. LetU beafaithfuluniserialg-module,sayofdimensiond. Lie’stheoremensures theexistenceofabasisB={u ,...,u }ofU suchthatthecorrespondingmatrixrepresen- 1 d tationR:g→gl(d)consistsofuppertriangularmatrices. Since x ∈GL(V),wehave[g,g]=V,whenceR(v)isstrictlyuppertriangularforevery v∈V. Set A=R(x)andE =R(v ), 0≤k ≤n−1. k k Inviewof[CS,Lemma2.2],wemayassumethatAsatisfies: (3.1) A =0wheneverA , A . ij ii jj Moreover,from[CS,Lemma2.1],weknowthatforevery1 ≤ i < d thereissomey ∈ g i suchthat (3.2) R(y) ,0. i i,i+1 Step1. IfA , A then(E ) ,0andA −A =λ. i,i i+1,i+1 0 i,i+1 i,i i+1,i+1 Indeed,(2.2),(2.3)andLemma3.1imply (3.3) (ad A−λ1 )kE =E , 0≤k ≤n−1, gl(d) gl(d) 0 k and (3.4) (ad A−λ1 )nE =0. gl(d) gl(d) 0 SinceAisuppertriangularandE isstrictlyuppertriangular,(3.3)and(3.4)give 0 (3.5) (A −A −λ)k(E ) =(E ) , 0≤k≤n−1,1≤i<d. i,i i+1,i+1 0 i,i+1 k i,i+1 and (3.6) (A −A −λ)n(E ) =0, 1≤i<d. i,i i+1,i+1 0 i,i+1 INDECOMPOSABLEMODULESOFSOLVABLELIEALGEBRAS 9 Fixisuchthat1≤i<dandA ,A . By(3.1),wehave i,i i+1,i+1 (3.7) A =0. i,i+1 Combining(3.2),(3.5)and(3.7)weobtain (3.8) (E ) ,0. 0 i,i+1 From(3.6)and(3.8)wededuce A −A =λ. i,i i+1,i+1 Step2. Wehave (3.9) A= A ⊕···⊕A , A ∈gl(d), 1 ℓ i i whereeachA hasscalardiagonal,sayofscalarα,and,settingα=α ,wehave i i 1 α =α−(i−1)λ. i Thisfollowsatoncefrom(3.1)andStep1. Step 3. Let us write each E in block form compatiblewith (3.9), that is, with diagonal k blocksofsizesd ×d ,...,d ×d . ThenalldiagonalblocksofeveryE areequalto0. 1 1 ℓ ℓ k Indeed,supposei≤ jand A =···=A . i,i j,j SettingUr =span{u ,...,u },weseethatthesection 1 r Ui,j =Uj/Ui−1 of U is a (uniserial) g-module of dimension e = j − i + 1. Let T : g → gl(e) be the corresponding matrix representation relative to the basis u + Ui−1,...,u + Ui−1 of U. i j ThenT(x)isuppertriangularwithscalardiagonal,soad T(x)isnilpotent.Ontheother gl(e) hand,sinceT isaLiehomomorphism,Lemma3.1gives (ad T(x)−λ1 )nT(v )=0, 0≤k≤n−1. gl(e) gl(e) k ItfollowsthateveryT(v )isageneralizedeigenvectorofad T(x)forthedistincteigen- k gl(e) valuesλand0. WeinferthateveryT(v ) = 0. Itfollowsthatalldiagonalblocksofevery k E areequalto0. k Step4. ReferringtotheblockdecompositionofE usedinStep3,ifi < jand j , i+1, k thenblock(i, j)ofE is0forall0≤k ≤n−1. k Indeed,recallingDefinition2.4,welet S(1),S(2),...,S(ℓ−1) bethesubspacesofgl(d)correspondingtotheblocksuperdiagonals1,2,...,ℓ−1,andset S =S(1)⊕···⊕S(ℓ−1). ThenS(i)isthe generalizedeigenspaceofad AactingonS forthe eigenvalueiλ, for gl(d) all1 ≤ i ≤ ℓ−1. Ontheotherhand,everyE ∈ S byStep3,while(3.3)and(3.4)imply k thatevery E belongsto the generalizedeigenspaceof ad A forthe eigenvalueλ. We k gl(d) concludethateveryE isinS(1). k 10 PAOLOCASATI,ANDREAPREVITALI,ANDFERNANDOSZECHTMAN Step5. WemayassumewithoutlossofgeneralitythatAisinJordanform (3.10) Jd1(α)⊕Jd2(α−λ)⊕···⊕Jdℓ(α−(ℓ−1)λ). Indeed,by(3.2)andStep3,thefirstsuperdiagonalofeveryA appearingin(3.9)con- i sists entirely of non-zero entries. Thus, for each 1 ≤ i ≤ ℓ there is X ∈ GL(d) such i i that XiAiXi−1 = Jdi(α−(i−1)λ). Set X =X ⊕···⊕X ∈GL(d). 1 ℓ Then XAX−1 is equal to (3.10) and XE X−1 is strictly block upper triangular with each k block(i, j), j,i+1,equalto0. Step6. Ahasatleast2Jordanblocks. Ifnot,V isannihilatedbyR,bySteps3and4,contradictingthefactthatRisfaithful. Step7. d +d ≤n+1forall1≤i<ℓ. i i+1 ApplyProposition2.2tosuitablesectionsofU. Step8.Withoutlossofgeneralitywemayassumethatthefirstcolumnofeachblockalong the first block superdiagonalof E is equal to the last canonicalvector, and that the last 0 rowofthelastoftheseblocksisequaltothefirstcanonicalvector. ThisfollowsfromLemma2.5. Final Stepwhen n = 1. Supposen = 1. Thenalld = 1byStep 7,so Steps5, 6and8 i yield that R is isomorphic to a representation T . As these representations are clearly α,ℓ non-isomorphictoeachother,theTheoremisproveninthiscase. Weassumefortheremainderoftheproofthatn>1. Step9. AhasatleastoneJordanblockofsize>1. Ifnot,d +d < n+1forallibyStep7. Sincethe x-invariantsubspacesofV forma i i+1 chain,itfollowsfromProposition2.2thatR(v )=0,contradictingthefaithfulnessofR. n−1 Step10.LetJdi(α−(i−1)λ)beaJordanblockofAofsize>1ofA,asensuredbyStep9. Theni≥ℓ−1andi≤2. Letusfirstseethati≥ℓ−1. Suppose,ifpossible,thatAhasconsecutiveJordanblocks Ja(β),Jb(β−λ),Jc(β−2λ)witha>1. Case1. b = 1. ConcentratingonasuitablesectionofU,asintheproofofStep3,wesee thatghasamatrixrepresentationP:g→gl(4)suchthat β 1 0 0 0 0 0 0 0 β 0 0 0 0 1 0 P(x)= , P(v )= . HeretheshapeofP(E )00ise00nsuβre−0dλbySβte−0p2sλ3,4and80. Now00 00 00 10  0 P(v )=[P(x),P(v )]−λP(v )=E1,3, 1 0 0

See more

The list of books you might like