Logout succeed
Logout succeed. See you again!

Instructor's Manual to Accompany Calculus with Analytic Geometry PDF
Preview Instructor's Manual to Accompany Calculus with Analytic Geometry
Instructors' Manual to accompany CALCULUS WITH ANALYTIC GEOMETRY Containing Answers to even-numbered exercises Solutions of selected exercises, even- and odd-numbered Comments on selected exercises ( $> ACADEMIC PRESS New York San Francisco London A Subsidiary of Harcourt Brace Jovanovich, Publishers CHAPTER 1 SECTION 2, page G 2. Suppose a fI a and b TI O. Then a ,= a • a-1b-1 l l (aa- )(bb- ) = 1 1 = 1. l -1 4. (a/b) (e/d) = (ab-1) (cd-I) = ab-led- and (ae)/(bd) (ae) (bd) = (ae) (b-ld-l ) = ab-led-l by Ex. 3. 6. ba + de = badd + bbed = (ad) Ibd)-l + (be) (bd)-l = (ad + be) (bd)-l -ad-b+d-be :lote that (ad)/(bd) = lad)(bd)-l = (ad)(b-ld-l ) = (ab-l)(dd-l) ab-l by Ex. 3. 8. a < a < b implies a < b-l < a-I, hence a < ab-1 = alb andab-l < aa-1 1. 2 2 2 2 2 2 10. Set a + ... + d e Then (a/e )2 + ... + (d/e )2 = (a + ... 2 4 2 4 2 + d )/e = e /e = 1/e . (More generally, the reciprocal of a sum of n squares is a sum of n squares.) 12. tal = ± a and Ibl = ± b with the same choice of sign, so a 2 lal + Ibl = ± (a + b) = la + bl. 14. laI = I(a - b) + bl 2 la - bl + Ibl so tal - Ibl < la - bl· Also - (IaI - IbI) = Ibl - lal2lb-al = la bl,-hence Iial - Ibll (I I - Ibl) 2 la - ,- a bl· 16. Ix - al > Ix - bl 18. Ixl > 3 20. Ix - 71 < 2 22. -1.0 < x < 10 24. 2.9999 < x < 3 or 3 < x< 3.0001 26. -6 < x < -2 CHAPTER 1 28. -5.005 < x < -5 or -5 < x < -4.995 30. -- < x < - 2 2 32. 1 < x < 13 34. x > ~- 36. 7 < x < 9 or 9 < x < 11 ss. - ! < , <! 12 40. x < 30 42. x > 44. 9 < x < 17 46. x < -5 or x > 3 48. x < -2 or -1 < x < 0 50. x < 0 or x > - 52. i, Ü 9' 11 54. Ifa=b = c = 0, then |a| -/- |ib| + |c| =0. Otherwise at least one of the non-negative numbers \a\ , \b\ , \c\ is positive and then |a| + |jb| + Ici > 0. -6 56. | (x + y) - 121 = | (x - 1) + (y - 5) | £ |x - 7| -f \y - 5| < 10 + 10"6 < 10"5. 58. Clearly |x| < 5 + 10 < 6. Now \xy - 35| * |x(y - 1) + 1(x - 5j | <_|x||y-7|+ 7|x - 5| < 6 x 10 6 + 7 x 10 6 = 1.3 x 10 5 -5 < 2 x 10 60. |x3 - 27| = |x2 + 3x + 9||x - 3| < |χ2 + 3x + 9| x 1θ"6. Since |x| < 4 we have |x + 3x + 9| <_ |x | +3|x| + 9 < 16 + 12 + 9 = 37 < 50. Hence |x - 27I < 50 x 10~6 = 5 x 10~5. SECTION 3, page 10 (-15,60)· + (-2,2)· + + (95,40)· (3,0) 20 H—I I I I H—I · I I ► -M—I—I—h H—h-1—I—I 20 · (0,-2) ZU (75,-10) + «(1,-3) 2 CHAPTER 1 (0.03, 12)· 50 + 10 (-0.02,35) H 1 h H -H 1 ► (-0.02, 5) 0.01 50+ t(0.00, -60) H 1 \- 1 1 1 ► 0.01 10. 12. (Ο,.ν) 1 + H h H h-^ (0,0) ·, 0) x (λ 14. 16. 1 + 1 + -+-H—H ■■♦ i * » H 1—H H t—H^J ► 18. 20. "I""1 I l i t t» H—|—I—I—\- H 1 1—I ► 1 1 1 1 3 CHAPTER 1 22. All points except (0, 0) 24. (1 ± /Î, 3), (1, 3 ± /2) 26. (± 1, 0), (0, /3) SECTION 4, page 15 2 4 2 /— 2. 1, x - x -/- 1, x + x + 1, x + Vx + 1, h(2x + h + 1) . 10. 0.01 + H—I—h I I I ► 0.01 14. CHAPTER 1 16. H 1 1 h -I 1 1 1 ► 18. all x, all y 20. all x, all y 22. x φ -2, y =)= 1 24. x < 1, y > 0 26. x < -, y >0 28. all x, y > /ΪΓ 30. x > -4, y > 0 32. |x| > 1, y >_ 0 34. x > -1, y> 0 36. 4x -/- 2, 4x + 4x - 3 , 4 32 38. x + 1, -x + x - x -/-x 40. [f + g] (χχ) = f (χλ) + g(x^) < f(x ) -f g(x ) = [f + g] (x) 7 42. -2x2 + 6x - 1, -4x + lOx - 4 44. -x + 2, -x 46. -x + 4, -x - 2 48. π(2χ + 5)2, 2T\X2 -h 5 50. fix; 52. x 54. 3, x + 1, etc. 56. 3[-(x0 + χλ)] -5 = |[(3x - 5; + (3x - 5)] 0 1 60. i/rx x ;2 = α/χ 2; η/χ 2; 58. no 0 1 0 χ SECTION 5, page 20 2. (0,-3) (-2,-7)< CHAPTER 1 8. (-20,41) + 2000 (200, 1750) 4-1000 r(100, 850) ■+■ H 1 h- 100 200 -10 10. 12. (-1,0.5) 3000 (100,2515) 2000 1000 '(50,1265) 4- (i,-o.i) -H 1 ► 50 100 t 14 16. kx (-1, 120) (100,4040) (1,-80) 22. 3 24. -1 26. CHAPTER 1 28. y = -x + 1 30. y = 2x + 1 ^ο 2 x 5 34. y = 0 32. y = 3^ + 3- 36. y = jx + j 38. y = -yU + 2) 40. y = -lOx - 16 42. - - , -3 AA 1 7 46. a, b 44. —2, 2 ' 48. 1/a, 1/2? 50. y = -3x + 17 52. 90° 54. 75° (or 105°); also tan Θ = ±(2 + /ï) SECTION 6, page 26 6. lt I II » A 10. I l I H 1—I—I ► (1,-2) (3,-7) 34. (-1,1) t 36. + 1 (_! Ü) ^ 2' 2 } -I 1 ► -1 -2 + -4+ -6 + 9