loading

Logout succeed

Logout succeed. See you again!

ebook img

Interpolation theory PDF

pages208 Pages
release year2018
file size1.109 MB
languageEnglish

Preview Interpolation theory

16 APPUNTI LECTURENOTES AlessandraLunardi DipartimentodiScienzeMatematiche, FisicheeInformatiche Universita`diParma ParcoAreadelleScienze,53/A 43124Parma,Italia InterpolationTheory Alessandra Lunardi Interpolation Theory (cid:2)c 2018ScuolaNormaleSuperiorePisa Terzaedizione Secondaedizione:2009 Primaedizione1999 isbn 978-88-7642-638-4 (eBook) DOI 10.1007/978-88-7642-638-4 issn2532-991X(print) issn2611-2248(online) Contents Foreword vii Introduction ix Nomenclature xiii 1 Realinterpolation 1 1.1 The K-method . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Examples . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . 18 1.2 Thetracemethod . . . . . . . . . . . . . . . . . . . . . 20 1.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . 26 1.3 Dualspacesofrealinterpolationspaces . . . . . . . . . 28 1.4 Intermediatespacesandreiteration . . . . . . . . . . . . 30 1.4.1 Examples . . . . . . . . . . . . . . . . . . . . . 37 1.4.2 Applications: thetheoremsofMarcinkiewicz andStampacchia;regularityinellipticPDE’s . . 39 1.4.3 Exercises . . . . . . . . . . . . . . . . . . . . . 42 2 Complexinterpolation 45 2.1 Definitionsandproperties . . . . . . . . . . . . . . . . . 47 2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . 55 2.1.2 ThetheoremsofHausdorff-YoungandStein . . 58 2.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . 61 3 Interpolationanddomainsofoperators 63 3.1 Operatorswithraysofminimalgrowth . . . . . . . . . . 63 3.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . 69 3.2 Twoormoreoperators . . . . . . . . . . . . . . . . . . 70 3.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . 75 vi AlessandraLunardi 3.2.2 Thesumoftwocommutingoperators . . . . . . 75 3.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . 83 4 Powersofpositiveoperators 85 4.1 Definitionsandgeneralproperties . . . . . . . . . . . . 85 4.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . 94 4.1.2 Powersofnonnegativeoperators . . . . . . . . . 95 4.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . 98 4.2 Operatorswithboundedimaginarypowers . . . . . . . . 98 4.2.1 Thesumoftwocommutingoperators withboundedimaginarypowers . . . . . . . . . 105 4.2.2 Maximal Lp regularityforequations inUMDspaces . . . . . . . . . . . . . . . . . . 110 4.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . 114 4.3 M-accretiveoperatorsinHilbertspaces . . . . . . . . . 115 4.3.1 Self-adjointoperatorsinHilbertspaces . . . . . 122 5 Interpolationandsemigroups 129 5.1 RealinterpolationbetweenBanachspacesanddomains ofgenerators . . . . . . . . . . . . . . . . . . . . . . . 135 5.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . 140 5.2 Examplesandapplications . . . . . . . . . . . . . . . . 141 5.3 RegularityinellipticPDE’sbyinterpolation . . . . . . . 148 5.4 Regularityinevolutionequationsbyinterpolation . . . . 156 6 Analyticsemigroupsandinterpolation 161 6.1 Characterizationofrealinterpolationspaces . . . . . . . 162 6.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . 165 6.2 Generationofanalyticsemigroupsbyinterpolation . . . 165 6.3 Regularityinabstractparabolicequations . . . . . . . . 167 6.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . 176 6.4 Anapplication: space–timeHo¨lderregularity inparabolicPDE’s . . . . . . . . . . . . . . . . . . . . 177 A TheBochnerintegral 181 A.1 Integralsovermeasurablerealsets . . . . . . . . . . . . 181 A.2 Lp andSobolevspaces . . . . . . . . . . . . . . . . . . 183 A.3 Weighted Lp spaces . . . . . . . . . . . . . . . . . . . . 185 References 187 Index 195 Foreword This book is the second edition of my 1999 lecture notes of the courses on interpolation theory that I delivered at the Scuola Normale in 1998 and 1999. Later I held other lectureson interpolation theory in different universities,andtheoriginallecturenoteswerepolishedandenriched. In the mathematical literature there are many good books on the sub- ject, but none of them is very elementary, and in many cases the basic principlesarehiddenbelowgreatgenerality. IntheselecturesItriedtoillustratetheprinciplesofinterpolationthe- oryaimingatsimplificationratherthangenerality. Ireducedtheabstract theoryasfaraspossible,andgavemanyexamplesandapplications,espe- ciallytooperatortheoryandtoregularityinpartialdifferentialequations. Moreoverthetreatmentisself-contained,theonlyprerequisitebeingthe knowledgeofbasicfunctionalanalysis. I would like to thank colleagues and friends who followed parts of mylectures,readolderversionsofthesenotesandgavesuggestionsand help for improvements: P. Celada, S. Cerrai, Ph. Cle´ment, G. Da Prato, C.Villani,J. Zabczyk,A.Zaccagnini. Foreword to the third edition. The third edition is just a revised ver- sionofthesecondone: someproofsweremodifiedoradded, newrefer- ences were given, and a number of mistakes and misprints were correc- ted. Many of them were detected by colleagues who used this book for theirlectures, andtoldme. Inparticular, IwouldliketothankH.Abels, R.FarwigandJ.Voigtfortheirpreciousremarks. Introduction Let X, Y be two real or complex Banach spaces. By X = Y we mean that X and Y have the same elements and equivalent norms. By Y ⊂ X we mean that Y is continuously embedded in X. As usual, we denote by L(X,Y) (in short, L(X) if X = Y) the space of all linear bounded operatorsfrom X toY,endowedbythenorm(cid:4)T(cid:4)L(X,Y) := sup{(cid:4)Tx(cid:4)Y : (cid:4)x(cid:4) = 1}. X The couple of Banach spaces (X,Y) is said to be an interpolation couple if both X and Y are continuously embedded in a Hausdorff to- pological vector space V. In this case the intersection X ∩Y is a linear subspaceofV,anditisaBanachspaceunderthenorm (cid:4)v(cid:4)X∩Y := max{(cid:4)v(cid:4)X, (cid:4)v(cid:4)Y}. Alsothesum X +Y := {x + y : x ∈ X, y ∈ Y}isalinearsubspaceof V. Itisendowedwiththenorm (cid:4)v(cid:4)X+Y := inf (cid:4)x(cid:4)X +(cid:4)y(cid:4)Y. x∈X,y∈Y,x+y=v As easily seen, X + Y is isometric to the quotient space (X × Y)/D, where D = {(x,−x) : x ∈ X ∩Y}. SinceV isaHausdorffspace, then D is closed, and X +Y is a Banach space. Moreover, (cid:4)x(cid:4)X ≥ (cid:4)x(cid:4)X+Y and (cid:4)y(cid:4)Y ≥ (cid:4)y(cid:4)X+Y for all x ∈ X, y ∈ Y, so that both X and Y are continuouslyembeddedin X +Y. ThespaceV isusedonlytoguaranteethat X+Y isaBanachspace. It willdisappearfromthegeneraltheory. If(X,Y)isaninterpolationcouple,anintermediatespaceisanyBanach space E suchthat X ∩Y ⊂ E ⊂ X +Y. Aninterpolationspacebetween X andY isanyintermediatespacesuch that for every T ∈ L(X) ∩ L(Y) (that is, for every linear operator T : x AlessandraLunardi X + Y (cid:8)→ X + Y whose restriction to X belongs to L(X) and whose restriction to Y belongs to L(Y)), the restriction of T to E belongs to L(E). This implies that there is a constant independent of T such that (cid:4)T(cid:4)L(E) ≤ Cmax{(cid:4)T(cid:4)L(X),(cid:4)T(cid:4)L(Y)), as next lemma (taken from [63]) shows. Lemma0.1. Let (X,Y) be an interpolation couple, and let E be an in- terpolation space between X and Y. Then there is C > 0 such that for each linear operator T : X + Y (cid:8)→ X + Y such that T|X ∈ L(X), T|Y ∈ L(Y)wehave (cid:4)T(cid:4)L(E) ≤Cmax{(cid:4)T(cid:4)L(X),(cid:4)T(cid:4)L(Y)}. Proof. The space B of the linear operators T : X +Y (cid:8)→ X +Y such that T|X ∈ L(X), T|Y ∈ L(Y) is easily seen to be a Banach space with the norm (cid:4)T(cid:4) := max{(cid:4)T(cid:4)L(X),(cid:4)T(cid:4)L(Y)}. Indeed, if {Tn} is a Cauchy sequence,Tn|X convergestosomeTX inL(X),Tn|Y convergestosomeTY inL(Y),thelimitoperatorT : X+Y (cid:8)→ X+Y,T(x+y) = T|Xx+T|Yy iswelldefined(andobviouslylinear)in X +Y,andT → T inB. n Define a linear operator (cid:2) : B (cid:8)→ L(E) by (cid:2)(T) := T|E. We shall provethatthegraphof(cid:2)isclosed,sothat(cid:2)isboundedandthestatement follows. Let T → T inB besuchthat(cid:2)(T ) → S inL(E)asn → ∞. Then n n foreachw ∈ X +Y andforeachdecompositionw = x +y,withx ∈ X and y ∈ Y,wehave (cid:4)Tnw−Tw(cid:4)X+Y≤(cid:4)(Tn−T)x(cid:4)X+(cid:4)(Tn−T)y(cid:4)Y≤(cid:4)Tn−T(cid:4)((cid:4)x(cid:4)X+(cid:4)y(cid:4)Y) andtakingtheinfimumoverallthedecompositionsofw weget (cid:4)Tnw−Tw(cid:4)X+Y ≤ (cid:4)Tn −T(cid:4)(cid:4)w(cid:4)X+Y sothatlimn→∞Tnw = Tw in X +Y. Ontheotherhand,ifw ∈ E then limn→∞Tnw = Sw in E andhencein X +Y. Therefore, Tw = Sw for eachw ∈ E,i.e. S = (cid:2)(T). The general interpolation theory is not devoted to characterize all the interpolation spaces between X and Y but rather to construct suitable families of interpolation spaces and to study their properties. The most knownandusefulfamiliesofinterpolationspacesaretherealinterpola- tionspaceswhichwillbetreatedinChapter1,andthecomplexinterpol- ationspaceswhichwillbetreatedinChapter2.

See more

The list of books you might like