Logout succeed
Logout succeed. See you again!

Introduction to robust estimation and hypothesis testing PDF
Preview Introduction to robust estimation and hypothesis testing
Introduction to Robust Estimation and Hypothesis Testing Second Edition Rand R. Wilcox Department of Psychology University of Southern California AMSTERDAM • BOSTON (cid:127) HEIDELBERG (cid:127) LONDON NEWYORK (cid:127) OXFORD (cid:127) PARIS (cid:127) SANDIEGO SANFRANCISCO (cid:127) SINGAPORE (cid:127) SYDNEY (cid:127) TOKYO AcquisitionEditor BarbaraA.Holland AssociateAcquisitionEditor TomSinger SeniorProjectManager AngelaG.Dooley MarketingManager PhilipPritchard CoverDesign RichardHannus CoverImage Superstock Composition CEPHA CoverPrinter PhoenixColor,Inc. InteriorPrinter TheMaple-VailBookManufacturingGroup,Inc. ElsevierAcademicPress 30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,CA92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK Thisbookisprintedonacid-freepaper. Copyright©2005,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopy,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone:(+44)1865843830,fax:(+44)1865853333, e-mail:[email protected] viatheElsevierhomepage(http://elsevier.com),byselecting“CustomerSupport” andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData Applicationsubmitted BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:0-12-751542-9 ForallinformationonallElsevierAcademicPressPublications visitourWebsiteatwww.books.elsevier.com PrintedintheUnitedStatesofAmerica 04 05 06 07 08 09 9 8 7 6 5 4 3 2 1 Contents Preface................................................................. xvii Chapter1 Introduction .............................................. 1 1.1 ProblemswithAssumingNormality................................ 2 1.2 Transformations.................................................... 6 1.3 TheInfluenceCurve................................................ 7 1.4 TheCentralLimitTheorem......................................... 8 1.5 IstheANOVAFRobust?........................................... 9 1.6 Regression.......................................................... 10 1.7 MoreRemarks...................................................... 10 1.8 UsingtheComputer:RandS-PLUS................................. 11 1.9 SomeData-ManagmentIssues...................................... 13 1.9.1 EliminatingMissingValues................................ 17 Chapter2 AFoundationforRobustMethods........................ 19 2.1 BasicToolsforJudgingRobustness................................. 20 2.1.1 QualitativeRobustness.................................... 21 2.1.2 InfinitesimalRobustness................................... 23 2.1.3 QuantitativeRobustness................................... 25 2.2 SomeMeasuresofLocationandTheirInfluenceFunction........... 26 2.2.1 Quantiles.................................................. 26 2.2.2 TheWinsorizedMean..................................... 27 iii iv Contents 2.2.3 TheTrimmedMean....................................... 29 2.2.4 M-MeasuresofLocation................................... 30 2.2.5 R-MeasuresofLocation.................................... 33 2.3 MeasuresofScale................................................... 33 2.3.1 MeanDeviationfromtheMean............................ 34 2.3.2 MeanDeviationfromtheMedian.......................... 35 2.3.3 MedianAbsoluteDeviation................................ 35 2.3.4 Theq-QuantileRange...................................... 35 2.3.5 TheWinsorizedVariance.................................. 36 2.4 Scale-EquivariantM-MeasuresofLocation.......................... 36 2.5 WinsorizedExpectedValues........................................ 38 Chapter3 EstimatingMeasuresofLocationandScale .............. 43 3.1 ABootstrapEstimateofaStandardError........................... 44 3.1.1 RandS-PLUSFunctionbootse............................ 46 3.2 DensityEstimators................................................. 47 3.2.1 NormalKernel............................................ 47 3.2.2 Rosenblatt’sShiftedHistogram............................ 48 3.2.3 TheExpectedFrequencyCurve............................ 48 3.2.4 AnAdaptiveKernelEstimator............................. 49 3.2.5 RandS-PLUSFunctionsskerd,kerden,kdplot,rdplot, akerd,andsplot.......................................... 50 3.3 TheSampleTrimmedMean......................................... 56 3.3.1 RandS-PLUSFunctiontmean............................. 59 3.3.2 EstimatingtheStandardErroroftheTrimmedMean....... 59 3.3.3 RandS-PLUSFunctionswin,winvar,andtrimse.......... 64 3.3.4 EstimatingtheStandardErroroftheSampleMedian,M... 64 3.3.5 RandS-PLUSFunctionmsmedse........................... 65 3.4 TheFinite-SampleBreakdownPoint................................ 65 3.5 EstimatingQuantiles............................................... 66 3.5.1 EstimatingtheStandardErroroftheSampleQuantile...... 67 3.5.2 RandS-PLUSFunctionqse................................ 69 3.5.3 TheMaritz–JarrettEstimateoftheStandardErrorofxˆq..... 69 Contents v 3.5.4 RandS-PLUSFunctionmjse.............................. 70 3.5.5 TheHarrell–DavisEstimator............................... 71 3.5.6 RandS-PLUSFunctionhd................................. 72 ˆ 3.5.7 ABootstrapEstimateoftheStandardErrorofθ ........... 72 q 3.5.8 RandS-PLUSFunctionhdseb............................. 72 3.6 AnM-EstimatorofLocation........................................ 73 3.6.1 ComputinganM-EstimatorofLocation.................... 79 3.6.2 RandS-PLUSFunctionmest.............................. 81 3.6.3 EstimatingtheStandardErroroftheM-Estimator.......... 81 3.6.4 RandS-PLUSFunctionmestse............................ 84 3.6.5 ABootstrapEstimateoftheStandardErrorofµˆm.......... 84 3.6.6 RandS-PLUSFunctionmestseb........................... 85 3.7 One-StepM-Estimator.............................................. 85 3.7.1 RandS-PLUSFunctiononestep........................... 86 3.8 W-Estimators....................................................... 87 3.9 TheHodges–LehmannEstimator................................... 88 3.10 SkippedEstimators................................................. 88 3.10.1 RandS-PLUSFunctionsmomandbmean.................... 89 3.11 SomeComparisonsoftheLocationEstimators...................... 90 3.12 MoreMeasuresofScale............................................. 92 3.12.1 TheBiweightMidvariance................................. 93 3.12.2 RandS-PLUSFunctionbivar............................. 96 3.12.3 ThePercentageBendMidvariance......................... 96 3.12.4 RandS-PLUSFunctionpbvar............................. 98 3.12.5 TheInterquartileRange.................................... 98 3.12.6 RandS-PLUSFunctionidealf............................ 99 3.13 SomeOutlierDetectionMethods.................................... 99 3.13.1 RulesBasedonMeansandVariances...................... 99 3.13.2 AMethodBasedontheInterquartileRange................ 100 3.13.3 Carling’sModification..................................... 100 3.13.4 AMAD-MedianRule...................................... 101 3.13.5 RandS-PLUSFunctionsoutboxandout................... 101 3.14 Exercises........................................................... 102 vi Contents Chapter4 ConfidenceIntervalsintheOne-SampleCase ........... 105 4.1 ProblemsWhenWorkingwithMeans............................... 105 4.2 Theg-and-hDistribution........................................... 110 4.3 InferencesAbouttheTrimmedMean............................... 113 4.3.1 RandS-PLUSFunctiontrimci............................ 117 4.4 BasicBootstrapMethods............................................ 117 4.4.1 ThePercentileBootstrapMethod.......................... 118 4.4.2 RandS-PLUSFunctiononesampb.......................... 119 4.4.3 Bootstrap-tMethod........................................ 119 4.4.4 BootstrapMethodsWhenUsingaTrimmedMean......... 121 4.4.5 Singh’sModification....................................... 125 4.4.6 RandS-PLUSFunctionstrimpbandtrimcibt............. 126 4.5 InferencesAboutM-Estimators..................................... 127 4.5.1 RandS-PLUSFunctionsmestciandmomci................ 129 4.6 ConfidenceIntervalsforQuantiles.................................. 130 4.6.1 AlteranativeMethodfortheMedian....................... 132 4.6.2 RandS-PLUSFunctionsqmjci,hdci,sint, qci,andqint.............................................. 133 4.7 ConcludingRemarks............................................... 134 4.8 Exercises........................................................... 135 Chapter5 ComparingTwoGroups.................................. 137 5.1 TheShiftFunction.................................................. 139 5.1.1 TheKolmogorov–SmirnovTest............................ 142 5.1.2 RandS-PLUSFunctionsks,kssig,kswsig, andkstiesig.............................................. 145 5.1.3 TheSBandandWBandfortheShiftFunction............. 147 5.1.4 RandS-PLUSFunctionssbandandwband................. 148 5.1.5 ConfidenceBandfortheDecilesOnly...................... 151 5.1.6 RandS-PLUSFunctionshifthd........................... 153 5.1.7 RandS-PLUSFunctionsg2plotandsplotg2.............. 155 5.2 Student’stTest..................................................... 155 Contents vii 5.3 TheYuen–WelchTest............................................... 159 5.3.1 RandS-PLUSFunctionyuen.............................. 161 5.3.2 ABootstrap-tMethodforComparingTrimmedMeans..... 162 5.3.3 S-PLUSFunctionyuenbt................................... 165 5.4 InferencesBasedonaPercentileBootstrapMethod.................. 167 5.4.1 ComparingM-Estimators.................................. 168 5.4.2 ComparingTrimmedMeans............................... 169 5.4.3 RandS-PLUSFunctionstrimpb2,pb2gen,andm2ci....... 169 5.5 ComparingMeasuresofScale....................................... 170 5.5.1 ComparingVariances...................................... 170 5.5.2 RandS-PLUSFunctioncomvar2........................... 171 5.5.3 ComparingBiweightMidvariances........................ 171 5.5.4 RandS-PLUSFunctionb2ci.............................. 171 5.6 PermutationTests.................................................. 172 5.6.1 RandS-PLUSFunctionpermg............................. 173 5.7 SomeHeteroscedastic,Rank-BasedMethods........................ 173 5.7.1 RandS-PLUSFunctionmee................................ 174 5.7.2 HandlingTiedValues..................................... 176 5.7.3 RandS-PLUSFunctionscidandbmp...................... 180 5.8 ComparingTwoIndependentBinomials............................ 181 5.8.1 Storer–KimMethod....................................... 182 5.8.2 Beal’sMethod............................................. 183 5.8.3 RandS-PLUSFunctionstwobinomandtwobici........... 184 5.9 ComparingDependentGroups..................................... 184 5.9.1 ComparingDeciles........................................ 185 5.9.2 RandS-PLUSFunctionshiftdhd.......................... 186 5.9.3 ComparingTrimmedMeans............................... 188 5.9.4 RandS-PLUSFunctionyuend............................. 190 5.9.5 ABootstrap-tMethodforMarginalTrimmedMeans....... 191 5.9.6 RandS-PLUSFunctionydbt.............................. 192 5.9.7 PercentileBootstrap:ComparingM-EstimatorsandOther MeasuresofLocationandScale............................ 192 5.9.8 RandS-PLUSFunctionbootdpci.......................... 194 5.9.9 ComparingVariances...................................... 195 viii Contents 5.9.10 TheSignTestandInferencesAboutthe BinomialDistribution...................................... 196 5.9.11 RandS-PLUSFunctionbinomci........................... 198 5.10 Exercises........................................................... 199 Chapter6 SomeMultivariateMethods.............................. 203 6.1 GeneralizedVariance............................................... 203 6.2 Depth.............................................................. 204 6.2.1 MahalanobisDepth........................................ 204 6.2.2 HalfspaceDepth........................................... 205 6.2.3 ComputingHalfspaceDepth.............................. 207 6.2.4 RandS-PLUSFunctionsdepth2,depth,fdepth,fdepthv2, unidepth,depth2.for,depth3.for,fdepth.for, fdepthv2.for,andufdepth.for........................... 210 6.2.5 ProjectionDepth........................................... 211 6.2.6 RandS-PLUSFunctionspdisandpdis.for............... 212 6.2.7 OtherMeasuresofDepth.................................. 213 6.2.8 RandS-PLUSFunctionzdepth............................ 214 6.3 SomeAffine-EquivariantEstimators................................ 214 6.3.1 Minimum-VolumeEllipsoidEstimator..................... 215 6.3.2 TheMinimum-CovarianceDeterminantEstimator......... 216 6.3.3 S-EstimatorsandConstrainedM-Estimators............... 216 6.3.4 Donoho–GaskoGeneralizationofaTrimmedMean........ 218 6.3.5 RandS-PLUSFunctionsdmeananddmean.for............. 219 6.3.6 TheStahel–DonohoW-Estimator.......................... 220 6.4 MultivariateOutlierDetectionMethods............................. 221 6.4.1 ARelplot.................................................. 222 6.4.2 RandS-PLUSFunctionrelplot........................... 223 6.4.3 TheMVEMethod......................................... 226 6.4.4 TheMCDMethod......................................... 226 6.4.5 RandS-PLUSFunctionscov.mveandcov.mcd............. 226 6.4.6 RandS-PLUSFunctionsoutmveandout................... 227 6.4.7 TheMGVMethod......................................... 228 6.4.8 RandS-PLUSFunctionoutmgv............................ 231 Contents ix 6.4.9 AProjectionMethod....................................... 231 6.4.10 RandS-PLUSFunctionsoutproandoutpro.for.......... 233 6.4.11 CommentsonChoosingaMethod......................... 234 6.5 ASkippedEstimatorofLocationandScatter........................ 236 6.5.1 RandS-PLUSFunctionssmean,smean.for,wmcd,wmve, mgvmean,andspat......................................... 238 6.6 ConfidenceRegionandInferenceBasedontheOPEstimatorof Location............................................................ 240 6.6.1 RandS-PLUSFunctionssmeancrandsmeancr.for........ 241 6.6.2 InferencesBasedontheMGVEstimator................... 243 6.6.3 RandS-PLUSFunctionsmgvcr............................ 244 6.7 Two-SampleCase.................................................. 244 6.7.1 RandS-PLUSFunctionssmean2andsmean2.for.......... 245 6.8 MultivariateDensityEstimators.................................... 245 6.9 ATwo-Sample,Projection–TypeExtensionofthe Wilcoxon–Mann–WhitneyTest..................................... 247 6.9.1 RandS-PLUSFunctionsmulwmwandmulwmw.for.......... 249 6.10 ARelativeDepthAnalogoftheWilcoxon–Mann–WhitneyTest..... 250 6.10.1 RandS-PLUSFunctionsmwmwandmwmw.for............... 252 6.11 ComparisonsBasedonDepth....................................... 253 6.11.1 RandS-PLUSFunctionslsqs3,lsqs3.for,anddepthg2... 256 6.12 ComparingDependentGroupsBasedonAllPairwiseDifferences... 259 6.12.1 RandS-PLUSFunctiondfried............................ 261 6.13 Exercises........................................................... 262 Chapter7 One-WayandHigherDesignsfor IndependentGroups...................................... 265 7.1 TrimmedMeansandaOne-WayDesign............................ 266 7.1.1 AWelch-TypeAdjustedDegreesofFreedomProcedure... 266 7.1.2 RandS-PLUSFunctiont1way............................. 268 7.1.3 AGeneralizationofBox’sMethod......................... 270 7.1.4 RandS-PLUSFunctionbox1way........................... 270 7.1.5 ComparingMedians....................................... 271