loading

Logout succeed

Logout succeed. See you again!

ebook img

Inverse Closed Ultradifferential Subalgebras PDF

file size0.28 MB
languageEnglish

Preview Inverse Closed Ultradifferential Subalgebras

INVERSE CLOSED ULTRADIFFERENTIAL SUBALGEBRAS ANDREASKLOTZ ABSTRACT. Inpreviousworkwehaveshownthatclassicalapproximationtheorypro- videsmethodsforthesystematicconstructionofinverse-closedsmoothsubalgebras.Now weextendthisworktotreatinverse-closedsubalgebrasofultradifferentiableelements.In particular,CarlemanclassesandDales-Daviealgebrasaretreated. Asanapplicationthe resultofDemko,SmithandMossandJaffardontheinverseofamatrixwithexponential 2 decayisobtainedwithintheframeworkofageneraltheoryofsmoothness. 1 0 2 n a J 1. INTRODUCTION 3 We describe new methods to generate a smooth inverse-closed subalgebra of a given 1 BanachalgebraAandtocharacterizethissubalgebrabyapproximationpropertiesandby weights. RecallthatasubalgebraBofAisinverse-closedinA,if ] A everyb∈BthatisinvertibleinAisactuallyinvertibleinB. F Aprototypeofaninverse-closedsubalgebraistheWieneralgebraofabsolutelyconvergent . h Fourierseries,whichisinverse-closedinthealgebraofcontinuousfunctionsonthetorus. at AnotherexampleisthealgebraC1(T)ofcontinuouslydifferentiablefunctionsonthetorus; m theproofthatC1(T)isinverse-closedinC(T)isessentiallythequotientruleofclassical [ analysis. Manymethodsfortheconstructionofinverse-closedsubalgebrasarebasedongeneral- 1 izationsofthissimplesmoothnessprinciple. InthecontextofBanachalgebras,derivatives v 8 arereplacedbyderivations. TheLeibnizruleforderivationsimpliesthattheirdomainisa 3 Banachalgebra,andbythesymmetryofAthedomainisinverse-closedinA,see[15]. 9 A more refined concept of smoothness can be developed, if A is invariant under the 2 boundedactionofad-dimensionalautomorphismgroup. InthiscasealgebrasofBessel- . 1 Besov type can be defined, and the properties of the group action imply that the spaces 0 definedforminverse-closedsubalgebrasofA,see[20]. 2 Adifferentapproachtosmoothnessisbyapproximationusingapproximationschemes 1 adaptedtothealgebramultiplication.Thislineofresearch,initiatedbyAlmiraandLuther[2, : v 3], yields Banach algebras of approximation spaces that are inverse-closed in A, if A is i X symmetric[15]. Moreover, if A is invariant under the action of the translation group and the approx- r a imation scheme consists of the bandlimited elements of A, we obtain Jackson-Bernstein theoremsthatidentifyapproximationspacesofpolynomialorderwithBesovspaces. Alloftheabovehasbeencarriedoutintwopreviouspublications[15,20]forsmooth- ness spaces of finite order. Now we use the same principles to construct inverse-closed subalgebrasofultradifferentiableelements. Date:January17,2012. 1991MathematicsSubjectClassification. 41A65,42A10,47B47. Keywordsandphrases. Banachalgebra,inverseclosedness,spectralinvariance,Carlemanclasses,Dales- Daviealgebras,matrixalgebra,off-diagonaldecay,automorphismgroup. A.K.wassupportedbyNationalResearchNetworkS106SISEoftheAustrianScienceFoundation(FWF) andtheFWFprojectP22746N13. 1 2 ANDREASKLOTZ Classes of Carleman type are defined by growth conditions on the norms of higher derivationsinthesamewayasforfunctions,andweobtainacharacterizationofinverse- closedCarlemanclassesbyadaptingaproofofSiddiqi[31]. Ifthegrowthofthederiva- tionssatisfiesthecondition(M2’)ofKomatsu,thenanalternativedescriptionoftheCar- lemanclassesasunionofweightedspacesorapproximationspacesisavailable. Whereas Carleman algebras are inductive limits of Banach spaces we can also define BanachalgebrasofultradifferentiableelementsderivedfromagivenBanachalgebra. The constructiongeneralizesanapproachusedbyDalesandDavie[7]forfunctionsdefinedon perfectsubsetsofthecomplexplane,sowecalltheresultingBanachalgebrasDales-Davie algebras. An result of Honary and Abtahi [1] on inverse-closed Dales-Davie algebras of functionscanbeadaptedtothenoncommutativesituation(Theorem32). The general theory has applications to Banach algebras of matrices with off-diagonal decay. The formal commutator δ(A)=[X,A], X =2πiDiag((k)k∈Z), is a derivation on B((cid:96)2),anditsdomaindefinesanalgebraofmatriceswithoff-diagonaldecaythatisinverse- closedinB((cid:96)2)[15,3.4]. ThetranslationgroupactsboundedlyonB((cid:96)2)byconjugation withthemodulationoperatorM =Diag(e2πik·t) , t k∈Zd (1) χ(A)=MAM = ∑ Aˆ(k)e2πik·t fort∈Rd, t t −t k∈Zd whereAˆ(k)isthekthsidediagonalofA, (cid:40) A(l,m), l−m=k, (2) Aˆ(k)(l,m)= 0, otherwise. In [15, 20] the theory of smooth and inverse-closed subalgebras has been applied to de- scribeBanachalgebrasofmatriceswithoff-diagonaldecay. TheapproximationtheoreticcharacterizationofCarlemanCarlemanclassesofGevrey typeonB((cid:96)2)yieldsanewproofofaresultofDemko,SmithandMoss[10]. Theorem1. IfA∈B((cid:96)2)with|A(k,l)|≤Ce−γ|k−l|forconstantsC,γ>0andallk,l,∈Zd, andifA−1∈B((cid:96)2),thenthereexistC(cid:48),γ(cid:48)>0suchthat |A−1|(k,l)≤C(cid:48)e−γ(cid:48)|k−l| forallk,l∈Zd. Insomeinstances,Dales-DaviealgebrasofmatricescanbeidentifiedwithknownBa- nachalgebrasofmatrices,e.g. ifC1 consistsofmatriceswithnorm v0 (cid:107)A(cid:107) = ∑ ∑|A(l,l−k)|, C1 v0 k∈Zdl∈Zd thenD1 (C1 )isaweightedformofthisalgebraforasubmultiplicativeweightv associ- M v0 M atedtoM,seeSection4. Theorganizationofthepaperisasfollows.Firstwerecallsomefactsfromthetheoryof Banachalgebrasandreviewresultsof[15,20]oninverse-closedsubalgebrasofagivenBa- nachalgebradefinedbyderivations,automorphismgroups,andapproximationspaces. In Section3,aftertreatingC∞ classes,ultradifferentiableclassesofCarlemantypeareintro- duced,andnecessaryandsufficientconditionsontheirinverse-closednessaregiven. Car- lemanclassessatisfyingaxiom(M2’)ofKomatsuarecharacterizedbyapproximationand weightconditions.AsanapplicationwegeneralizetheresultofDemko[10]ontheinverses ofmatriceswithexponentialoff-diagonaldecay. Theresultsontheinverse-closednessof Dales-Davie algebras are treated in Section 4. In Section 5 some applications to matrix algebraswithoff-diagonaldecayaregiven. IntheappendixacombinatorialLemmaonthe iteratedquotientruleisproved. Acknowledgment: The author wants to thank Karlheinz Gro¨chenig for many helpful discussions. INVERSECLOSEDULTRADIFFERENTIALSUBALGEBRAS 3 2. PRELIMINARIES 2.1. Notation. The cardinality of a finite set A is |A|. The d-dimensional torus is Td = Rd/Zd. Thesymbol(cid:98)x(cid:99)denotesthegreatestintegersmallerorequaltotherealnumberx. PositiveconstantswillbedenotedbyC,C(cid:48),C ,c,etc.,wherethesamesymbolmightdenote 1 differentconstantsineachequation. We use the standard multi-index notation. Multi-indices are denoted by Greek letters andaread-tuplesofnonnegativeintegers. Thedegreeofxα =x1α1···xdαd is|α|=∑dj=1αj, and Dαf(x)=∂α1···∂αdf(x) is the partial derivative. The inequality β ≤α means that 1 d βj≤αj forallindices j. The p-normonCd isdenotedby|x|p=(cid:0)∑dk=1|x(k)|p(cid:1)1/p A submultiplicative weight on Zd is a positive function v:Zd →R such that v(0)= 1 and v(x+y)≤v(x)v(y) for x,y∈Zd. The standard polynomial weights are v (x)= r (1+|x|)r for r ≥0. The weighted spaces (cid:96)wp(Zd) are defined by the norm (cid:107)x(cid:107)(cid:96)wp(Zd) = (cid:107)xw(cid:107)(cid:96)p(Zd). If w=vr we will simply write (cid:107)x(cid:107)(cid:96)rp(Zd). A weight w on Zd satisfies the Gelfand,Raikov,Shilov(GRS)-conditioniflim w(nx)1/n=1forallx∈Zd. n→∞ ThecontinuousembeddingofthenormedspaceX intothenormedspaceY isdenoted asX (cid:44)→Y. TheoperatornormofaboundedlinearmappingA: X →Y is(cid:107)A(cid:107) . Inthe X→Y specialcaseofoperatorsA: (cid:96)2(Zd)→(cid:96)2(Zd)wewrite(cid:107)A(cid:107) =(cid:107)A(cid:107) or B((cid:96)2(Zd)) (cid:96)2(Zd)→(cid:96)2(Zd) simply(cid:107)A(cid:107) . B((cid:96)2) WewillconsiderBanachspaceswithequivalentnormsasequal. 2.2. InverseclosedBanachalgebras. AllBanachalgebrasareassumedtobeunital. To verifythataBanachspaceAwithnorm(cid:107)(cid:107)A isaBanachalgebraitissufficienttoprove that (cid:107)ab(cid:107)A ≤C(cid:107)a(cid:107)A(cid:107)b(cid:107)A for some constantC. A Banach algebra A is a (Banach) ∗- algebraifithasanisometricinvolution∗,i.e.,(cid:107)a∗(cid:107)A=(cid:107)a(cid:107)A foralla∈A. TheBanach ∗-algebra A is symmetric, if σA(a∗a)⊆[0,∞) for all a∈A, where σA(a) denotes the spectrumofa∈A. Thespectralradiusofa∈AisρA(a)=sup{|λ|:λ ∈σA(a)}. Definition2(Inverse-closedness). IfA⊆BareBanachalgebraswithcommonmultipli- cationandidentity,wecallAinverse-closedinB,if (3) a∈Aanda−1∈B implies a−1∈A. The relation of inverse-closedness is transitive: If A is inverse-closed in B and B is inverse-closedinC,thenAisinverse-closedinC. 2.3. Derivations. A derivation δ on a Banach algebra A with domain D = D(δ) = D(δ,A) a subspace of A is a closed linear mapping δ: D→A that satisfies the Leib- nizrule (4) δ(ab)=aδ(b)+δ(a)b foralla,b∈D. If A is a ∗-algebra, we assume that the derivation and the domain are symmetric, i.e., D=D∗ and δ(a∗)=δ(a)∗ for all a∈D. The domain is normed with the graph norm (cid:107)a(cid:107)D=(cid:107)a(cid:107)A+(cid:107)δ(a)(cid:107)A. Assume that A is a symmetric Banach algebra with a symmetric derivation δ. If 1∈ D(A), then the (symmetric) Banach algebra D(A) is inverse-closed in A. Moreover, δ satisfiesthequotientruleδ(a−1)=−a−1δ(a)a−1,see[15]. Inmoregenerality,let{δ ,···,δ }beasetofcommutingderivationsonA.Thedomain 1 d ofδ δ ...δ ,1≤r ≤disdefinedbyinductionasD(δ δ ...δ )=D(δ ,D(δ ...δ )). r1 r2 rn j r1 r2 rn r1 r2 rn Foreverymulti-indexα theoperatorδα =∏ δαk anditsdomainD(δα)arewellde- 1≤k≤d k fined. InanalogytoCα(Rd)weequipD(δα)withthenorm (cid:107)a(cid:107)D(δα)= ∑(cid:107)δβ(a)(cid:107)A. β≤α 4 ANDREASKLOTZ Sinceδ isassumedtobeaclosedoperatoronA,itfollowsthatδα isaclosedoperatoron j D(δα). IfAissymmetricand1∈D(δ ),1≤k≤d,thenD(δα)isinverse-closedinA.Further- k more,theBanachalgebraA(k)=(cid:84) D(δα)andtheFre´chetalgebraA(∞)=C∞(A)= |α|≤k (cid:84)∞ A(k)areinverse-closedinA[15,3.7]. k=0 2.4. AutomorphismGroups. A(d-parameter)automorphismgroupactingontheBanach algebraAisasetofBanachalgebraautomorphismsΨ={ψ} ofAthatsatisfyψ ψ = t t∈Rd s t ψs+t forall s,t∈Rd andareuniformlybounded,i.e. MΨ=supt∈Rd(cid:107)ψt(cid:107)A→A<∞.If Aisa∗-algebraweassumethatΨconsistsof∗-automorphisms. Wecalla∈Acontinuousandwritea∈C(A),iflim ψ(a)=a. t→0 t Fort∈Rd\{0}thegeneratorδ,definedbyδ(a)=lim ψht(a)−a isaclosedderiva- t t h→0 h tion,andthedomainD(δ,A)ofδ isthesetofalla∈Aforwhichthislimitexists. IfA t t isa∗-algebra,thenδ issymmetric. t TheactionofΨisperiodic,ifψ =ψ forallt∈Rd andall1≤ j≤d. Iftheaction t t+ej ofΨisperiodic,wecandefineFouriercoefficientsofa∈C(A)by (cid:90) aˆ(k)= ψ(A)e−2πik·tdt t Td With the group action Ψ it is possible to define the classical smoothness spaces, see, e.g. [6]. We need the Besov spaces that are defined, using the difference operators ∆k = t (ψ −id)k,bythenorm t (cid:16)(cid:90) dt (cid:17)1/p (cid:107)a(cid:107)Λrp(A)=(cid:107)a(cid:107)A+ Rd(|t|−r(cid:107)∆tka(cid:107)A)p|t|d for 1≤ p≤∞ (standard change for p=∞), r >0 and the integer k >r (every choice of k yields an equivalent norm). Algebra properties of Λp(A) are discussed in [20]. In r particular,Λp(A)isinverse-closedinAforall1≤p≤∞andallr>0,see[20,3.8]. r InasimilarspiritBesselpotentialspacesareintroducedanditcanbeshownthatthey forminverse-closedsubalgebrasofA[20]. 2.5. Approximation Spaces. An approximation scheme on the Banach algebra A is a family(Xn)n∈N0 ofclosedsubspacesofAthatsatisfyX0={0}, Xn⊆Xm forn≤m, and X ·X ⊆X , n,m∈N . If A is a ∗-algebra, we assume that 1∈X and X =X∗ for n m n+m 0 1 n n alln∈N0. Then-thapproximationerrorofa∈AbyXn isEn(a)=infx∈Xn(cid:107)a−x(cid:107)A. For 1≤p<∞andwaweightonN theapproximationspaceEp(A)consistsofalla∈Afor 0 w whichthenorm ∞ (5) (cid:107)a(cid:107)Ep =(cid:0)∑Ek(a)pw(k)p(cid:1)1/p w k=0 isfinite(standardchangeforp=∞).Ifwisastandardpolynomialweight,w=v forsome r r>0, then in order to remain consistent with the existing literature we define Ep(A)= r Ep (A). v r−1/p Algebra properties of approximation spaces are discussed in [3, 15]. In particular, in[15]thefollowingresultisproved. Proposition3. IfAisasymmetricBanachalgebrawithapproximationscheme(Xn)n∈N0 thenEp(A)isinverse-closedinA. r Approximationwithbandlimitedelements. Therelationbetweensmoothnessandapprox- imationisgivenbytheWeierstrasstheoremandJackson-Bernstein-theorems. GivenaBanachalgebrawithautomorphismgroupwesaythata∈Aisσ-bandlimited forσ>0,ifthereisaconstantCsuchthatforeverymulti-indexαtheBernsteininequality (6) (cid:107)δα(a)(cid:107)A≤C(2πσ)|α| INVERSECLOSEDULTRADIFFERENTIALSUBALGEBRAS 5 issatisfied. Anelementisbandlimited,ifitisσ-bandlimitedforsomeσ >0. Inthiscase X ={0}, X ={a∈A: aisn-bandlimited}, n∈N, is an approximation scheme for A 0 n [15,Lemma5.8]. Theorem4(Weierstrassapproximationtheorem). IfAisaBanachalgebrawithautomor- phismgroupΨ,thesetofbandlimitedelementsisdenseinC(A). Theorem5(Jackson-Bernstein-Theorem). LetAbeaBanachalgebrawithautomorphism groupΨ,andassumethatr>0and1≤ p≤∞. If(Xn)n∈N0 istheapproximationscheme ofbandlimitedelements,thenΛp(A)=Ep(A). Inparticular r r (7) a∈Λ∞(A) ifandonlyif E (a)≤Cn−r foralln>0. r n 3. ALGEBRASOFC∞ ANDULTRADIFFERENTIABLEELEMENTS 3.1. C∞ class. As in the scalar case, elements in a Banach algebra with automorphism groupthathavederivationsofallorderscanbecharacterizedbyapproximationproperties. Proposition6. IfAisaBanachalgebrawithautomorphismgroupΨ,and(Xn)n∈N0 isthe approximation scheme that consists of the bandlimited elements of A, then a∈C∞(A) if andonlyifforallr>0lim E (a)kr =0.IftheactionofΨisperiodic,thisisfurther k→∞ k equivalenttolim|k|→∞(cid:107)aˆ(k)(cid:107)A|k|r=0forallr>0. Proof. The proof works as for the scalar case. If a∈C∞(A), then a∈Λ∞ (A) for any r+1 r>0 by the properties of Besov spaces [5, 20]. Using Proposition 5 we conclude that E (a)kr+1 ≤C, and E (a)kr → 0 for k → ∞. For the other inclusion observe that (7) k k impliesa∈Λ∞(A),andfurtherδαa∈Aforallα with|α|=(cid:98)r(cid:99),againbytheinclusion r relationsofBesovspaces[5,20]. IftheactionofΨisperiodic,weusethatforallb∈X |k|∞ (cid:90) (8) aˆ(k)= (ψ(a)−ψ(b))e−2πik·tdt, t t Td andso(cid:107)aˆ(k)(cid:107)A≤C(cid:107)a−b(cid:107)A. Theinfimumofthenormoverallb∈X|k|∞ yields (9) (cid:107)aˆ(k)(cid:107)A≤CE|k|∞(a), and so Ek(a)kr →0 implies (cid:107)aˆ(k)(cid:107)Akr →0. If we assume (cid:107)aˆ(k)(cid:107)Akr →0 for all r>0 then∑k∈Zd(2πi)kaˆ(k)convergesinthenormofAtoδα(a)forallmulti-indicesα,aseach δ isclosedinD(δα),anda∈C∞(A). (cid:3) j 3.2. CarlemanClasses. Definition 7 (cf. [12, 13]). Let A be a Banach algebra with commuting derivations δ1,···,δd, and let M ={Mk}k∈N0 be a sequence of positive numbers with M0 =1. For eachr>0wesaythata∈AisintheBanachspaceC (A),ifthenorm r,M (cid:107)δα(a)(cid:107)A (cid:107)a(cid:107)Cr,M(A)= sup r|α|M α∈Nd |α| 0 isfinite. TheCarlemanClassC (A)istheunionofthespacesC (A), M r,M C (A)= (cid:91)C (A) M r.M r>0 withtheinductivelimittopology. CallMthedefiningsequenceofC (A). M IfA=(cid:84)d kerδ wecallC (A)trivial,otherwiseC (A)isnontrivial. j=1 j M M Example8. IfM =1forallk,thenC (A)consistsofther-bandlimitedelementsof k 2πr,M A. IfM =k!r forr>0thenJ (A)=C (A)istheGevrey-classoforderr. Inparticular, k r M J (A) consists of the analytic elements of A, i.e., the elements a∈A with convergent 1 expansions∑α∈Nd δαα(!a)tα forsomet>0. Thisfollowsasinthescalarcase,see,e.g.[32]. 0 Consequently,ifr≤1thenJ (A)consistsonlyofanalyticelements. r 6 ANDREASKLOTZ EquivalenceofDefiningSequences. WecalltwodefiningsequencesM,Nequivalent,M∼ N,ifC (A)=C (A). IfckN ≤M ≤CkN forallindiceskandsomeconstantsc,Cthen M N k k k M∼N. Foexample,theGevreyclassJ isalsogeneratedbythesequenceN =krk. r k Werecallastandardconstruction. LetMbeadefiningsequence. The functionassoci- atedtoMis uk (10) T (u)=sup foru>0. M M k≥0 k We call T and T equivalent and write T ∼T , if T (cu)≤T (u)≤T (Cu) for all N M N M N M N u>0 and some positive constants c,C. A function associated to the Gevrey class J is r T (u)=exp(ru1/r). M e Thelog-convexregularizationMcofthesequenceM=(Mk)k∈N0 isthelargestlogarith- micallyconvexsequencesmallerthanM. Proposition9([21,26,27]). Thelog-convexregularizationofMsatisfies uk (11) Mc=sup . k T (u) u>0 M Moreover,TMc =TM andMcc=Mc. Wewillalsoneedthefollowingsimplefactsaboutlog-convexsequences. Lemma 10 ([22, 27]). (1) For all k,l ∈N the sequence M satisfies McMc ≤Mc . (2) 0 k l k+l Thesequence(Mc)1/k isincreasing. k Ifδ ,...,δ aregeneratorsofanautomorphismgroupwecangiveaweaktypecharac- 1 d terizationofC (A). r,M Lemma 11. Assume that the automorphism group Ψ acts on A. An element a∈A is in Cr,M(A)ifandonlyifGa(cid:48),a(t)=(cid:104)a(cid:48),ψt(a)(cid:105),isinCr,M(L∞(Rd)))foralla(cid:48)∈A(cid:48), thedual ofA. Inthiscase(cid:107)a(cid:107)Cr,M(A)(cid:16)sup(cid:107)a(cid:48)(cid:107)A(cid:48)≤1(cid:107)Ga(cid:48),a(cid:107)Cr,M(L∞(Rd)). Proof. Therequiredequivalencefollowsimmediatelyfrom (cid:107)δαa(cid:107)A≤ sup (cid:107)Ga(cid:48),δαa(cid:107)L∞(Rd)= sup (cid:107)DαGa(cid:48),a(cid:107)L∞(Rd)≤MΨ(cid:107)δαa(cid:107)A (cid:107)a(cid:48)(cid:107)A(cid:48)≤1 (cid:107)a(cid:48)(cid:107)A(cid:48)≤1 bydividingwithrαM|α|andtakingsupremaoverallα. TheequalityGa(cid:48),δαa=DαGa(cid:48),ais aconsequenceofelementarypropertiesofGa(cid:48),a[15,Lemma3.20]. (cid:3) Proposition 12 ([14, 27]). Assume that the automorphism group Ψ acts on A, and let M be a defining sequence for C (A). If limM1/k = 0, then C (A) is trivial. If 0 < M k M limM1/k<∞,thenC (A)istheclassofbandlimitedelements. Iflim M1/k=∞,and k M k→∞ k (Mc)1/k (cid:16)(Nc)1/k, thenC (A)=C (A). Moreover, the last condition is equivalent to k k M N T ∼T . M N Proof. Asa∈CM(A)ifandonlyifGa(cid:48),a∈CM(Rd)foralla(cid:48)∈A(cid:48),theconditionsfollow from[27,6.5.III]byaweaktypeargument. Thestatementgiventhereisforfunctionson the real line, but it remains true for functions on Rd. In the proof one has to replace the Kolmogorovinequality[26,6.3.III]bytheCartan-Gornyestimates[27,(6.4.5)]. Theycan beverifiedforfunctionsonRd aswell(see[22,IV.E.,Problem7]). Theequivalencebetweencondition(12)andT ∼T followsdirectlyfromthedefini- M N tionofequivalentassociatedfunctions. (cid:3) Corollary13. Inparticular,weobtainthatCM(A)=CMc(A). INVERSECLOSEDULTRADIFFERENTIALSUBALGEBRAS 7 AlgebrapropertiesofCarlemanclasses. InthissectionweverifythatC (A)isaninverse- M closedsubalgebraofA,ifCM(A)=CMc(A).IfAhasanautomorphismgroupthisfollows formProposition12. Proposition14. EachCarlemanclassC (A)isanalgebra. M Proof. TheproofisasinKomatsu[21]. (cid:3) We need the following technical term: A sequence (uk)k∈N0 of positive numbers is almostincreasing,ifu ≤Cu forallk<landaconstantC>0. k l Lemma15. AssumethatthedefiningsequenceMsatisfiesM=Mc.Thesequence(M /k!)1/k k isalmostincreasingifandonlyifthereisaC>0suchthatforalll∈Nandallindices jk,k=1,...,lwith j=∑lk=1 jk l M M (12) ∏ jk ≤Cj j. j ! j! k=1 k Proof. Assumingthat(M /k!)1/k isalmostincreasingweobtain k M (cid:16)M (cid:17)k/j jk ≤Ck j , j ! j! k andthe“if”partfollowsbymultiplyingtheseestimates. Fortheotherimplicationobserve firstthatStirling’sformulaimpliesthat(M /k!)1/k isalmostincreasingifandonlyifthere k isaC(cid:48)>0suchthat 1/k 1/l M M (13) k ≤C(cid:48) l forallk<l. k l Ifl=rkforanintegerrthen(12)implies 1/k 1/rk M M k ≤C(cid:48) rk . k rk 1/k Ifrk<l<(r+1)k,weuseaninterpolationargument. ByLemma10thesequenceM k isincreasingink,so 1/l 1/kr 1/k M M kr kr 1 M l ≥ kr ≥ k l kr l l C(cid:48) k bywhathasbeenjustproved. Butthisimplies 1/k 1/l 1/l M l M M k ≤C(cid:48) l ≤2C l . (cid:3) k kr l l (cid:3) Remark. (a) For the proof of the direct implication we do not need the condition that M=Mc. (b)Equation(13)impliesthatM1/k→∞if(M /k!)1/k isalmostincreasing. k k Theorem16([25,31]). IfCM(A)=CMc(A)andif(Mk/k!)1/k isalmostincreasing,then C (A)isinverse-closedinA. M Weadaptthemethodof[31]tothenoncommutativesituation. Weneedaformofthe iteratedquotientrulethatwillbeprovedintheappendix. Lemma17. LetE={1,...,d}andδ ,...,δ bederivationsthatsatisfythequotientrule 1 d δ (a−1)=−a−1δ (a)a−1 forall j∈E. j j Foreveryk∈NandeverytupleB=(b ,...,b )∈Eksetδ (a)=δ ...δ (a).Definethe 1 k B b1 bk orderedpartitionsofBintomnonemptysubtuplesas P(B,m)={(B ,···,B ): B=(B ,···,B ),B (cid:54)=0/ foralli}. 1 m 1 m i 8 ANDREASKLOTZ Then |B| (cid:16) m (cid:17) (14) δ (a−1)= ∑(−1)m ∑ ∏a−1δ (a) a−1. B Bi m=1 (Bi)1≤i≤m∈P(B,m) j=1 ProofofTheorem16. Assume that |α|=k. With the notation of Lemma 17 there is a k-tuple B with |B| = k such that δα = δ . As a ∈C (A), we know that (cid:107)δ (a)(cid:107) ≤ B M Bi Ar|Bi|M for some constants C,r >0. The number of (nonempty) partitions of B into |Bi| sets(B) ∈P(B,m)ofcardinalityk is(cid:0) k (cid:1),soweobtainthenormestimate i 1≤i≤m i k1,...,km k (cid:18) k (cid:19)(cid:16) m (cid:17) (cid:107)δα(a−1)(cid:107)A≤ ∑(cid:107)a−1(cid:107)mA+1 ∑ k ,...,k ∏CrkjMkj m=1 k1+···km=k 1 m j=1 kj≥1 (15) k (cid:18) k (cid:19)(cid:16) m (cid:17) =rk ∑(cid:107)a−1(cid:107)m+1Cm ∑ ∏M A k ,...,k kj m=1 k1+···km=k 1 m j=1 kj≥1 Using(12)weobtain k (cid:107)δα(a−1)(cid:107)A≤rkCkMk ∑(cid:107)a−1(cid:107)mA+1Am ∑ 1 m=1 k1+···km=k kj≥1 k (cid:18)k−1(cid:19) =rkCkM ∑(cid:107)a−1(cid:107)m+1Am ≤CkM , k A m−1 1 k m=1 andthisiswhatwewantedtoshow. (cid:3) Corollary18. TheGevreyclassesJ (A)areinverse-closedinA,ifr≥1. r 3.3. Description by Weighted and Approximation Spaces. In this section we charac- terizeCarlemanclassesbyunionsofweightedspacesandofapproximationspaces,ifthe actionoftheautomorphismgroupΨontheBanachalgebraAisperiodicandthesequence MsatisfiesKomatsu’scondition(M2’). Definition 19. Let A be a Banach ∗- algebra with periodic automorphism group Ψ. For 1≤p≤∞andaweightvonZd weintroducetheweightedspacesspaces (cid:16) (cid:17)1/p Cvp(A)={a∈A: (cid:107)a(cid:107)Cvp(A)= ∑ (cid:107)aˆ(k)(cid:107)Ap v(k)p <∞} k∈Zd withtheobviousmodificationfor p=∞,whereaˆ(k)aretheFouriercoefficientsofa(see Section2.4). Remark. If (cid:96)p(Zd) is a Banach algebra with respect to convolution, then Cp(A) is an v v inverse-closedsubalgebraofA.Theproofisastraightforwardadaptionoftheproofof[17, Theorem3.2],basedonthetheoremofBochner-Philips. Lemma20. IfMisadefiningsequenceforC (A),r>0,andT (k)=T (2π|k|∞),then M r,M M r C1 (A)⊆C (A)⊆C∞ (A). Tr,M r,M Tr,M Proof. Assume first that a∈C (A). Let j be an index such that |k |=|k| . Then, by r,M j ∞ l-foldpartialintegration (cid:90) 1 (cid:90) aˆ(k)= ψ(a)e−2πik·tdt= ψ(δl a)e−2πik·tdt. Td t (2πikj)l Td t ej Takingnormsweobtain rlM l (cid:107)aˆ(k)(cid:107)A≤C . (2π|k| )l ∞ INVERSECLOSEDULTRADIFFERENTIALSUBALGEBRAS 9 This relation is valid for all l ∈ N , and therefore also for the infimum, which yields 0 (cid:107)aˆ(k)(cid:107)A≤C/Tr,M(k),ora∈C∞Tr,M(A). Fortheconverseinclusionassumethata∈C1Tr,M, i.e., ∑k∈Zd(cid:107)aˆ(k)(cid:107)ATr,M(k)<∞. For α ∈Nd weestimatethenormofδα(a)by 0 (cid:107)δα(a)(cid:107)A≤ ∑ (cid:107)δα(aˆ(k))(cid:107)A≤ ∑ (2π|k|∞)|α|(cid:107)aˆ(k)(cid:107)A k∈Zd k∈Zd (2π|k| )|α| u|α| ≤(cid:107)a(cid:107) sup ∞ ≤(cid:107)a(cid:107) sup C1Tr,M(A)k∈Zd Tr,M(k) C1Tr,M(A)u>0TM(u/r) =(cid:107)a(cid:107) r|α|Mc , C1 (A) |α| Tr,M thelastequalityby(11),andsoa∈Cr,Mc(A)=Cr,M(A). (cid:3) Corollary21. WiththenotationofLemma20, (cid:91)C1 (A)(cid:44)→C (A)(cid:44)→ (cid:91)C∞ (A), Tr,M M Tr,M r>0 r>0 whereallspacesareequippedwiththeirnaturalinductivelimittopologies. InordertoobtainequalityinCorollary21weimposecondition(M2’)ofKomatsu[21]. Lemma22([28],[21,Prop. 3.4]). IfM isadefiningsequence,thefollowingareequiva- lent: (M2’) Thereexistconstantsc>0,h>1suchthatforallk∈N. (1) T (hr)≥CrT (r)forallr>0. M M (2) TM(λr) ≥exp(cid:0)log(r/c)logλ/logh(cid:1)forallr,λ >0. TM(r) Example23. ThedefiningsequencefortheGevrey-classJ ,r>0satisfies(M2’). r Proposition 24. If A is a Banach algebra with periodic automorphism group and if the definingsequencesatisfies(M2’) C (A)= (cid:91)C1 (A)= (cid:91)C∞ (A)= (cid:91)E∞ (A) M Tr,M Tr,M Tr,M r>0 r>0 r>0 withtheinterpretationthatthesealgebrasaretopologicallyisomorphic. Proof. (see,e.g.,[23])Wesplittheproofintoseveralparts. Byknownpropertiesofinduc- tivelimits[11]itissufficienttoprovethefollowinginclusions. (1) C1 (A)(cid:44)→C∞ (A): ThisfollowsfromLemma20. Tr,M Tr,M (2) C∞ (A)(cid:44)→C1 (A)forsomeλ >0: UsingLemma22,(2),weobtaintheestimate Tλr,M Tr,M ∑ (cid:107)aˆ(k)(cid:107)ATr,M(|k|∞)≤ ∑ (cid:107)aˆ(k)(cid:107)ATr,M(λ|k|∞)exp(cid:0)−log(|kc|∞)llooggλh(cid:1) k∈Zd k∈Zd (cid:16)|k| (cid:17)−logλ/logh ≤ sup(cid:107)aˆ(k)(cid:107)ATr,M(λ|k|∞) ∑ c∞ . k∈Zd k∈Zd Ifwechooseλ suchthatlogλ/logh>d,thesumontherighthandsideoftheinequality isconvergent. (3) E∞ (A)(cid:44)→C∞ (A)followsfrom(9). Tr,M Tr,M (4) C∞ (A)(cid:44)→E∞ (A)forsomeκ>0willbeverifiedwithoutlossofgeneralityforr= Tr,M Tκr,M 2π.Theapproximationerrorofa∈C∞T2π,M(A)canbeestimatedbyEl(a)≤∑|k|∞≥l(cid:107)aˆ(k)(cid:107)A≤ (cid:107)a(cid:107)C∞T2π,M∑|k|∞≥lT2−π1,M(|k|).AsT2π,M(u)=TM(u)isincreasing,wecanreplacethesumby 10 ANDREASKLOTZ anintegral. Weassumethatlissolargethat log(l/c) >2d,andobtain logh (cid:90) (cid:90) ∞ 1 ∑ T−1(|k|)≤ T−1(|k|)dk≤C(cid:48) ud−1du M M T (u) |k|∞≥l |k|∞≥l l M =C(cid:48)ld(cid:90) ∞ 1 vd−1dv≤C(cid:48) ld (cid:90) ∞vd−1e−log(llo/gc)hlogvdv T (lv) T (l) 1 M M 1 =C(cid:48) ld (cid:90) ∞vd−1−lolgo(gl/hc)dv=C(cid:48) ld 1 ≤C(cid:48) ld d−1, TM(l) 1 TM(l) log(l/c)−d TM(l) logh where we have used(2) of Lemma 22 in the second line. Applying (1) of Lemma 22 d times we obtain T (l)≥CldT(l/hd) with a constant C independent of l. Substituting M thisinthecurrentestimateweobtainEl(a)≤C(cid:107)a(cid:107)C∞T2π,MTM−1(l/hd),andtheconstantCis independentofl. So(cid:107)a(cid:107)E∞ ≤C(cid:107)a(cid:107)C∞ ,andthatiswhatwewantedtoshow. (cid:3) T2πhd,M T2π,M Foramoregeneraldiscussionofapproximationresultssee[29]. 4. DALES-DAVIEALGEBRAS InthissectionweassumethatΨisaoneparameterautomorphismgroupactingonthe BanachalgebraA. We define Banach algebras that are determined by growth conditions on the sequence ((cid:107)δk(a)(cid:107)A)k∈N0 by adapting a similar construction introduced in [7] for scalar functions inthecomplexplane. Definition 25. Let M=(M ) be an algebra sequence, that is, a sequence of positive k k≥0 numberswithM =1and Mk+l ≥ MkMl forallk,l∈N .TheDales-DaviealgebraD1 (A) 0 (k+l)! k! l! 0 M consistsoftheelementsa∈Awithfinitenorm ∞ (cid:107)a(cid:107)D1(A)= ∑Mk−1(cid:107)δk(a)(cid:107)A. M k=0 ThespaceD1 (A)isindeedaBanachalgebra. ThiswillbeprovedinProposition28. M Example26. RecallthatthenormofaderivationonC1v0(A)(seeDefinition19)is(cid:107)δk(a)(cid:107)C1v0(A)= ∑l∈Z(cid:107)aˆ(l)(cid:107)A(2π|l|)k.ForthenormonD1M(C1v0(A))weobtain ∞ ∞ (2π|l|)k (cid:107)a(cid:107)D1M(A)=k∑=0Mk−1l∑∈Z(cid:107)aˆ(l)(cid:107)A(2π|l|)k=l∑∈Z(cid:107)aˆ(l)(cid:107)Ak∑=0 Mk . Letusdefinetheweightv associatedtoMby M ∞ (2π|l|)k (16) v (l)= ∑ . M M k=0 k Thus we obtain D1 (C1 (A))=C1 (A). For this example we have established a relation M v0 vM betweenthegrowthofderivativesandweights. Werecallsomenotionsfromcomplexanalysis(see, e.g. [24]). Foranentirefunction f letM (r)=sup |f(x)|. Theorder of f isρ =lim loglogM (r)/logr. If f has f |x|≤r f r→∞ f finiteorderρf, thetypeof f isσf =limr→∞logMf(r)r−ρf.Ifσf =0, wesaythat f has minimaltype. Inthefollowinglemmasomebasicpropertiesofv arecollected. M Lemma27. (1) IfMisanalgebrasequence,thenv (|k|)issubmultiplicative. M

See more

The list of books you might like