Logout succeed
Logout succeed. See you again!

Inverse Function Theorems for Generalized Smooth Functions PDF
Preview Inverse Function Theorems for Generalized Smooth Functions
Inverse Function Theorems for Generalized Smooth Functions PaoloGiordanoandMichaelKunzinger 6 1 0 2 n u J 3 1 1 Introduction ] A Sinceitsinception,categorytheoryhasunderscoredtheimportanceofunrestricted F compositionof morphismsformanypartsof mathematics.The closureof a given . h spaceof“arrows”withrespecttocompositionprovedtobeakeyfoundationalprop- t erty.ItisthereforeclearthatthelackofthisfeatureforSchwartzdistributionshas a m considerableconsequencesinthestudyofdifferentialequations[28,14],inmath- ematical physics [4, 6, 8, 10, 18, 21, 25, 41, 42, 43, 46], and in the calculus of [ variations[30],tonamebutafew. 4 On the other hand, Schwartz distributions are so deeply rooted in the linear v frameworkthat onecan even isomorphicallyapproachthem focusingonlyon this 3 aspect, opting for a completely formal/syntactic viewpoint and without requiring 1 0 any functional analysis, see [49]. So, Schwartz distributions do not have a notion 0 of pointwiseevaluationin general,and donotforma category,althoughit is well 0 knownthatcertainsubclassesofdistributionshavemeaningfulnotionsofpointwise 2. evaluation,seee.g.[35,36,47,45,16,15,51]. 0 Thisisevenmoresurprisingifonetakesintoaccounttheearlierhistoricalgene- 6 sisofgeneralizedfunctionsdatingbacktoauthorslikeCauchy,Poisson,Kirchhoff, 1 Helmholtz,Kelvin,Heaviside,andDirac,see[29,33,34,50].Forthem,this“gen- : v eralization”issimplyaccomplishedbyfixinganinfinitesimalorinfiniteparameter i inanordinarysmoothfunction,e.g.aninfinitesimalandinvertiblestandarddevia- X tioninaGaussianprobabilitydensity.Therefore,generalizedfunctionsarethought r a ofassomekindofsmoothset-theoreticalfunctionsdefinedandvaluedinasuitable PaoloGiordano University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien e-mail: [email protected] MichaelKunzinger University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien e-mail: [email protected] 1 2 PaoloGiordanoandMichaelKunzinger non-Archimedeanringofscalars.Fromthisintuitivepointofview,theyclearlyhave pointvaluesandformacategory. This aspect also bears upon the conceptof (a generalized)solution of a differ- ential equation.In fact, any theoryof generalizedfunctionsmusthave a link with the classical notion of (smooth) solution. However, this classical notion is deeply grounded on the concept of composition of functions and, at the same time, it is oftentoonarrow,asisamplydemonstratede.g.inthestudyofPDEinthepresence of singularities. In our opinion, it is at least not surprising that also the notion of distributionalsolutiondidnotleadtoasatisfyingtheoryofnonlinearPDE(noteven ofsingularODE).Wehavehenceawildgardenofflourishingequation-dependent techniquesandazooofcounter-examples.Thewell-knowndetachingbetweenthese techniquesandnumericalsolutionsofPDEisanothersideofthesamequestion. One can say that this situation presents several analogies with the classical compass-and-straightedgesolutionofgeometricalproblems,orwiththesolutionof polynomialequationsbyradicals.Thedistinctionbetweenalgebraicandirrational numbers and the advent of Galois theory were essential steps for mathematics to startfocusingonadifferentconceptofsolution,frequentlynearertoappliedprob- lems.Intheend,theseclassicalproblemsstimulatedmoregeneralnotionsofgeo- metricaltransformationand numericalsolution,which nowadayshave superseded theirorigins.Theanalogiesareevengreaterwhenobservingthatfirststepstoward aGaloistheoryofnonlinearPDEarearising,see[5,7,38,39]. Generalizedsmoothfunctions(GSF)areapossibleformalizationoftheoriginal historicalapproachoftheaforementionedclassicalauthors.We extendthefieldof realnumbersintoanaturalnonArchimedeanringr Randweconsiderthesimplest notion of smooth function on the extended ring of scalars r R. To define a GSF e f :X −→Y,X ⊆r Rn,Y ⊆r Rd,wesimplyrequiretheminimallogicalconditions sothatanetofordinarysmoothfunctions fe ∈C¥ (W e ,Rd),W ee⊆Rn,definesaset- e e theoreticalmapX −→Y whichisinfinitelydifferentiable;seebelowforthedetails. This freedom in the choice of domains and codomainsis a key propertyto prove that GSF are closed with respect to composition.As a result, GSF share so many propertieswithordinarysmoothfunctionsthatfrequentlyweonlyhavetoformally generalizeclassicalproofstothenewcontext.Thisallowsaneasierapproachtothis newtheoryofgeneralizedfunctions. It is important to note that the new framework is richer than the classical one becauseofthepossibilitytoexpressnon-Archimedeanproperties.So,e.g.,twodif- ferentinfinitesimalstandarddeviationsinaGaussianresultininfinitelycloseDirac- delta-like functionalsbut, generallyspeaking,these two GSF could have different infinitevaluesatinfinitesimalpointsh∈r R.Forthisreason,Schwartzdistributions are embeddedas GSF, but this embeddingis not intrinsic and it has to be chosen e dependingonthephysicalproblemorontheparticulardifferentialequationweaim tosolve. Inthepresentwork,weestablishseveralinversefunctiontheoremsforGSF.We prove both the classical local and also some global versions of this theorem. It is remarkabletonotethatthelocalversionisformallyverysimilartotheclassicalone, but with the sharp topology instead of the standard Euclidean one. We also show InverseFunctionTheoremsforGeneralizedSmoothFunctions 3 the relationsbetweenour results and the inversefunctiontheoremfor Colombeau functionsestablishedbyusingthediscontinuouscalculusof[2,3]. The paper is self-contained in the sense that it contains all the statements of results required for the proofs of the new inverse function theorems. If proofs of preliminariesareomitted,wegivereferencestowheretheycanbefound. 1.1 Basicnotions Theringofgeneralizedscalars Inthiswork,I denotestheinterval(0,1]⊆Randwewillalwaysusethevariablee forelementsofI;wealsodenotee -dependentnetsx∈RI simplyby(xe ).ByNwe denotethesetofnaturalnumbers,includingzero. We start by defining the non-Archimedeanring of scalars that extends the real fieldR.Foralltheproofsofresultsinthissection,see[19,18]. Definition1. Letr =(r e )∈RI beanetsuchthatlime→0+r e =0+,then (i) I(r ):={(r e−a)|a∈R>0}iscalledtheasymptoticgaugegeneratedbyr . (ii) If P(e ) is a property of e ∈I, we use the notation ∀0e : P(e ) to denote ∃e ∈I∀e ∈(0,e ]: P(e ).Wecanread∀0e asfore small. 0 0 (iii) Wesaythatanet(xe )∈RI isr -moderate,andwewrite(xe )∈Rr if∃(Je )∈ I(r ): xe =O(Je )ase →0+. (iv) Let (xe ), (ye )∈RI, then we say that (xe )∼r (ye ) if ∀(Je )∈I(r ): xe = ye +O(Je−1) as e →0+. This is an equivalence relation on the ring Rr of moderatenetswithrespecttopointwiseoperations,andwecanhencedefine r R:=Rr /∼r , e whichwecallRobinson-Colombeauringofgeneralizednumbers,[48,8].We denotetheequivalenceclassx∈r Rsimplybyx=:[xe ]:=[(xe )]∼∈r R. Inthefollowing,r willalwaysdenoteaenetasinDef.1,andwewillusetheseimpler notationRforthecaser e =e .Theinfinitesimalr canbechosendependingonthe classofdifferentialequationsweneedtosolveforthegeneralizedfunctionsweare e going to introduce,see [20]. For motivationsconcerningthe naturality of r R, see [18].Wealsousethenotation dr :=[r e ]∈r Rand de :=[e ]∈(e)R. e We can also define an orderrelation on r R by saying [xe ]≤[ye ] if there exists e e (ze )∈RI suchthat(ze )∼r 0(wethensaythat(ze )isr -negligible)andxe ≤ye +ze e fore small.Equivalently,wehavethatx≤yifandonlyifthereexistrepresentatives (xe ),(ye )ofx,ysuchthatxe ≤ye foralle .Clearly,r Risapartiallyorderedring. Theusualrealnumbersr∈Rareembeddedinr Rconsideringconstantnets[r]∈r R. e Eveniftheorder≤isnottotal,westillhavethepossibilitytodefinetheinfimum e e [xe ]∧[ye ]:=[min(xe ,ye )], and analogously the supremum function [xe ]∨[ye ]:= [max(xe ,ye )]andtheabsolutevalue|[xe ]|:=[|xe |]∈r R.Ournotationsforintervals e 4 PaoloGiordanoandMichaelKunzinger are:[a,b]:={x∈r R|a≤x≤b},[a,b]R:=[a,b]∩R,andanalogouslyforsegments [x,y]:={x+r·(y−ex)|r∈[0,1]}⊆r Rnand[x,y]Rn =[x,y]∩Rn.Finally,wewrite x≈ytodenotethat|x−y|isaninfinitesimalnumber,i.e.|x−y|≤rforallr∈R . e >0 Thisisequivalenttolime→0+|xe −ye|=0forallrepresentatives(xe ),(ye )ofx,y. Topologiesonr Rn e On the r R-module r Rn, we can consider the natural extension of the Euclidean norm, i.e. |[xe ]| := [|xe |] ∈r R, where [xe ] ∈ r Rn. Even if this generalized norm e e takesvaluesinr R,itsharesseveralpropertieswithusualnorms,likethetriangular e e inequalityortheproperty|y·x|=|y|·|x|.Itisthereforenaturaltoconsideronr Rn e topologiesgeneratedbyballsdefinedbythisgeneralizednormandsuitablenotions e ofbeing“strictlylessthanagivenradius”: Definition2. Letc∈r Rnandx,y∈r R,then: (i) Wewritex<yife∃r∈r R≥0: reisinvertible,andr≤y−x (ii) Wewritex<Ryif∃r∈eR>0: r≤y−x. (iii) B (c):= x∈r Rn||x−c|<r foreachr∈r R . r >0 n o (iv) BFr(c):= x∈r Ren||x−c|<Rr foreachr∈eR>0. (v) BE(c):=n{x∈Rn ||x−c|<r},ofor each r ∈R , denotes an ordinary Eu- r e >0 clideanballinRn. The relations <, <R have better topological properties as compared to the usual strictorderrelationa≤banda6=b(thatwewillneveruse)becauseboththesets ofballs B (c)|r∈r R , c∈r Rn and BF(c)|r∈R , c∈r Rn arebasesfor r >0 r >0 n o n o two topologieson r Ren. The formeeris called sharp topology,wheereas the latter is called Fermat topology. We will call sharply open set any open set in the sharp e topology,andlargeopensetanyopensetintheFermattopology;clearly,thelatter iscoarserthantheformer.Theexistenceofinfinitesimalneighborhoodsimpliesthat the sharp topology induces the discrete topology on R. This is a necessary result when one has to deal with continuous generalized functions which have infinite derivatives.Infact,if f′(x )isinfinite,onlyforx≈x wecanhave f(x)≈ f(x ). 0 0 0 The following result is useful to deal with positive and invertible generalized numbers(cf.[24,40]). Lemma1.Letx∈r R.Thenthefollowingareequivalent: (i) xisinvertibleaendx≥0,i.e.x>0. (ii) Foreachrepresentative(xe )∈Rr ofxwehave∀0e : xe >0. (iii) Foreachrepresentative(xe )∈Rr ofxwehave∃m∈N∀0e : xe >r em InverseFunctionTheoremsforGeneralizedSmoothFunctions 5 Internalandstronglyinternalsets A naturalway to obtainsharplyopen,closedandboundedsets in r Rn isby using a net (Ae ) of subsets Ae ⊆Rn. We have two ways of extending the membership e relationxe ∈Ae togeneralizedpoints[xe ]∈r R: Definition3. Let(Ae )beanetofsubsetsofRen,then (i) [Ae ]:= [xe ]∈r Rn|∀0e : xe ∈Ae iscalledtheinternalsetgeneratedbythe n o net(Ae ).See[44e]fortheintroductionandanin-depthstudyofthisnotion. (ii) Let(xe )beanetofpointsofRn,thenwesaythatxe ∈e Ae ,andwereaditas (xe )stronglybelongsto(Ae ),if∀0e : xe ∈Ae andif(xe′)∼r (xe ),thenalso x′e ∈Ae for e small. Moreover,we set hAe i:= [xe ]∈r Rn|xe ∈e Ae , and n o wecallitthestronglyinternalsetgeneratedbythenet(Aee). (iii) Finally,wesaythattheinternalsetK=[Ae ]issharplyboundedifthereexists r∈r R>0 suchthatK⊆Br(0).Analogously,anet(Ae )issharplyboundedif thereeexistsr∈r R>0 suchthat[Ae ]⊆Br(0). Therefore,x∈[Ae ]iftehereexistsarepresentative(xe )ofxsuchthatxe ∈Ae fore small, whereas this membership is independentfrom the chosen representative in thecaseofstronglyinternalsets.Noteexplicitlythataninternalsetgeneratedbya constantnetAe =A⊆Rn issimplydenotedby[A]. The following theoremshows that internaland stronglyinternalsets have dual topologicalproperties: Theorem1.Fore ∈I,letAe ⊆Rnandletxe ∈Rn.Thenwehave (i) [xe ]∈[Ae ]ifandonlyif∀q∈R>0∀0e : d(xe ,Ae )≤r eq.Therefore[xe ]∈[Ae ] ifandonlyif[d(xe ,Ae )]=0∈r R. (ii) [xe ]∈hAe iifandonlyif∃q∈R>e0∀0e : d(xe ,Ace )>r eq,whereAec :=Rn\Ae. Therefore,if(d(xe ,Aec))∈Rr ,then[xe ]∈hAe iifandonlyif[d(xe ,Aec)]>0. (iii) [Ae ]issharplyclosedandhAe iissharplyopen. (iv) [Ae ]=[cl(Ae )],wherecl(S)istheclosureofS⊆Rn.OntheotherhandhAe i= hint(Ae )i,whereint(S)istheinteriorofS⊆Rn. Wewillalsousethefollowing: Lemma2.Let(W e )beanetofsubsetsinRn foralle ,and(Be )asharplybounded netsuchthat[Be ]⊆hW e i,then ∀0e : Be ⊆W e . Sharply bounded internal sets (which are always sharply closed by Thm. 1 (iii)) serveascompactsetsforourgeneralizedfunctions.Foradeeperstudyofthistype ofsetsinthecaser =(e )see[44,17];inthesameparticularsetting,see[19]and referencesthereinfor(strongly)internalsets. 6 PaoloGiordanoandMichaelKunzinger Generalizedsmoothfunctions Fortheideaspresentedinthissection,seealsoe.g.[19,18]. Usingtheringr R,itiseasytoconsideraGaussianwithaninfinitesimalstandard deviation.Ifwedenotethisprobabilitydensityby f(x,s ),andifwesets =[s e ]∈ e r R>0, where s ≈0, we obtain the net of smooth functions(f(−,s e ))e∈I. This is thebasicideawedevelopinthefollowing e Definition4. LetX ⊆r Rn andY ⊆r Rd bearbitrarysubsetsofgeneralizedpoints. Thenwesaythat e e f :X −→Y isageneralizedsmoothfunction ifthereexistsanetoffunctions fe ∈C¥ (W e ,Rd)defining f inthesensethatX ⊆ hW e i, f([xe ])=[fe (xe )]∈Y and(¶ a fe (xe ))∈Rdr forallx=[xe ]∈Xandalla ∈Nn. ThespaceofGSFfromX toY isdenotedbyr GC¥ (X,Y). Letusnoteexplicitlythatthisdefinitionstatesminimallogicalconditionstoobtain a set-theoretical map from X intoY and defined by a net of smooth functions. In particular,thefollowingThm.2statesthattheequality f([xe ])=[fe (xe )]ismean- ingful, i.e. that we have independence from the representatives for all derivatives [xe ]∈X 7→[¶ a fe (xe )]∈r Rd,a ∈Nn. Theorem2.LetX ⊆r Rn aendY ⊆r Rd bearbitrarysubsetsofgeneralizedpoints. Let fe ∈C¥ (W e ,Rd)beanetofsmoothfunctionsthatdefinesageneralizedsmooth e e mapofthetypeX −→Y,then (i) ∀a ∈Nn∀(xe ),(xe′)∈Rrn : [xe ]=[xe′]∈X ⇒ (¶ a ue (xe ))∼r (¶ a ue(xe′)). (ii) ∀[xe ]∈X∀a ∈Nn∃q∈R>0∀0e : supy∈BeEq(xe)|¶ a ue(y)|≤e −q. (iii) For all a ∈Nn, the GSF g:[xe ]∈X 7→[¶ a fe (xe )]∈Rd is locally Lipschitz inthesharptopology,i.e.eachx∈X possessesasharpneighborhoodU such e that|g(x)−g(y)|≤L|x−y|forallx,y∈U andsomeL∈r R. (iv) Each f ∈r GC¥ (X,Y)iscontinuouswithrespecttothesharptopologiesin- e ducedonX,Y. (v) Assume that the GSF f is locally Lipschitz in the Fermat topology and that its Lipschitz constants are always finite: L∈R. Then f is continuousin the Fermattopology. (vi) f :X−→Y isaGSFifandonlyifthereexistsanetve ∈C¥ (Rn,Rd)defining ageneralizedsmoothmapoftypeX −→Y suchthat f =[ve (−)]|X. (vii) SubsetsS⊆r Rs withthetraceofthesharptopology,andgeneralizedsmooth mapsasarrowsformasubcategoryofthecategoryoftopologicalspaces.We willcallthisceategoryr GC¥ ,thecategoryofGSF. ThedifferentialcalculusforGSFcanbeintroducedshowingexistenceandunique- ness of another GSF serving as incremental ratio. For its statement, if P(h) is a property of h∈r R, then we write ∀sh: P(h) to denote ∃r∈r R ∀h∈B (0): >0 r P(h)and∀Fh: P(h)for∃r∈R ∀h∈BF(c): P(h). e >0 r e InverseFunctionTheoremsforGeneralizedSmoothFunctions 7 Theorem3. Let U ⊆ r Rn be a sharply open set, let v = [ve ] ∈ r Rn, and let f ∈r GC¥ (U,r R) be a generalized smooth map generated by the net of smooth e e functions fe ∈C¥ (W e ,R).Then e (i) There exists a sharp neighborhood T ofU×{0} and a generalized smooth mapr∈r GC¥ (T,r R),calledthegeneralizedincrementalratioof f alongv, suchthat e ∀x∈U∀sh: f(x+hv)= f(x)+h·r(x,h). (ii) Ifr¯∈r GC¥ (S,r R)isanothergeneralizedincrementalratioof f alongvde- finedonasharpneighborhoodSofU×{0},then e ∀x∈U∀sh: r(x,h)=r¯(x,h). (iii) Wehaver(x,0)= ¶¶ vfee (xe ) foreveryx∈U andwecanthusdefine ¶¶ vf(x):= h i r(x,0),sothat ¶ f ∈r GC¥ (U,r R). ¶ v IfU is a large open set, then an anaelogousstatement holds replacing ∀sh by ∀Fh andsharpneighborhoodsbylargeneighborhoods. Notethatthisresultpermitstoconsiderthepartialderivativeof f withrespecttoan arbitrarygeneralizedvectorv∈r Rnwhichcanbe,e.g.,infinitesimalorinfinite. Usingthisresultweobtaintheusualrulesofdifferentialcalculus,includingthe chainrule.Finally,wenotethatfoereachx∈U,themapDf(x).v:= ¶ f(x)∈r Rd is ¶ v r R-linearinv∈r Rn.Thesetofallther R-linearmapsr Rn−→r Rd willbedenoted e byL(r Rn,r Rd).ForA=[Ae (−)]∈L(r Rn,r Rd),weset|A|:=[|Ae |],thegeneralized e e e e e numberdefinedbytheoperatornormsofthematricesAe ∈L(Rn,Rd). e e e e EmbeddingofSchwartzdistributionsandColombeaufunctions Wefinallyrecalltworesultsthatgiveacertainflexibilityinconstructingembeddings ofSchwartzdistributions.Notethatboththeinfinitesimalr andtheembeddingof Schwartzdistributionshavetobechosendependingontheproblemweaimtosolve. A trivial example in this directionis the ODE y′ =y/de , which cannotbe solved forr =(e ),butithasasolutionforr =(e−1/e ).Asanothersimpleexample,ifwe needthepropertyH(0)=1/2,whereH istheHeavisidefunction,thenwehaveto choosetheembeddingofdistributionsaccordingly.Thiscorrespondstothephilos- ophyfollowedin[26].Seealso[20]forfurtherdetails. If j ∈D(Rn), r ∈R and x∈Rn, we use the notations r⊙j for the function >0 x∈Rn7→ 1 ·j x ∈Randx⊕j forthefunctiony∈Rn7→j (y−x)∈R.These rn r notations permit(cid:0)to(cid:1) highlight that ⊙ is a free action of the multiplicative group (R ,·,1) on D(Rn) and ⊕ is a free action of the additive group (R ,+,0) on >0 >0 D(Rn).Wealsohavethedistributivepropertyr⊙(x⊕j )=rx⊕r⊙j . Lemma3.Let b∈Rr be a net such that lime→0+be =+¥ . Let d ∈(0,1). There existsanet(y e )e∈I ofD(Rn)withtheproperties: 8 PaoloGiordanoandMichaelKunzinger (i) supp(y e )⊆B1(0)foralle ∈I. (ii) y e =1foralle ∈I. (iii) ´∀a ∈Nn∃p∈N: supx∈Rn|¶ a y e (x)|=O(bep)ase →0+. (iv) ∀j∈N∀0e : 1≤|a |≤ j⇒ xa ·y e(x)dx=0. (v) ∀h ∈R>0∀0e : |y e |≤1+´h . (vi) Ifn=1,thenthe´net(y e )e∈I canbechosensothat −0¥ y e =d. ´ Ify e satisfies(i)–(vi)theninparticulary eb:=b−e 1⊙y e satisfies(ii)-(v). Concerning embeddings of Schwartz distributions, we have the following result, where r W c :={[xe ]∈[W ]|∃K ⋐W ∀0e : xe ∈K} is called the set of compactly supportedpointsinW ⊆Rn. f Theorem4.UndertheassumptionsofLemma3,letW ⊆Rnbeanopensetandlet (y eb)bethenetdefinedinLemma3.Thenthemapping iWb :T ∈E′(W )7→ T∗y eb (−) ∈r GC¥ (r W c,r R) h(cid:16) (cid:17) i f e uniquelyextendstoasheafmorphismofrealvectorspaces ib:D′−→r GC¥ (r (−) ,r R), c g e andsatisfiesthefollowingproperties: (i) Ifb≥ dr −aforsomea∈R>0,thenib|C¥ (−):C¥ (−)−→r GC¥ (r (−)c,r R) isasheafmorphismofalgebras. g e (ii) IfT ∈E′(W )thensupp(T)=supp(ib(T)). W (iii) lime→0+ W iWb(T)e ·j =hT,j iforallj ∈D(W )andallT ∈D′(W ). (iv) ib comm´utes with partial derivatives, i.e. ¶ a ib(T) =ib (¶ a T) for each W W T ∈D′(W )anda ∈N. (cid:0) (cid:1) ConcerningtheembeddingofColombeaugeneralizedfunctions,werecallthatthe specialColombeaualgebraonW isdefinedasthequotientGs(W ):=E (W )/N s(W ) M ofmoderatenetsovernegligiblenets,wheretheformeris EM(W ):={(ue )∈C¥ (W )I|∀K⋐W ∀a ∈Nn∃N∈N:sup|¶ a ue (x)|=O(e −N)} x∈K andthelatteris N s(W ):={(ue)∈C¥ (W )I|∀K⋐W ∀a ∈Nn∀m∈N:sup|¶ a ue(x)|=O(e m)}. x∈K Usingr =(e ),wehavethefollowingcompatibilityresult: Theorem5.AColombeaugeneralizedfunctionu=(ue )+N s(W )d ∈Gs(W )d de- fines a generalized smooth map u:[xe ]∈r W c −→[ue (xe )]∈Rd which is locally LipschitzonthesameneighborhoodoftheFermattopologyforallderivatives.This f e InverseFunctionTheoremsforGeneralizedSmoothFunctions 9 assignment provides a bijection of Gs(W )d onto r GC¥ (r W ,r Rd) for every open c setW ⊆Rn. f e For GSF, suitable generalizations of many classical theorems of differential and integral calculus hold: intermediate value theorem, mean value theorems, Taylor formulasin differentforms,a sheaf propertyfor the Fermattopology,and the ex- tremevaluetheoremoninternalsharplyboundedsets(see[18]).Thelatterarecalled functionallycompact subsets of r Rn and serve as compactsets for GSF. A theory of compactlysupportedGSF hasbeen developedin [17], andit closely resembles e the classical theory of LF-spaces of compactly supportedsmooth functions. It re- sultsthatforsuitablefunctionallycompactsubsets,thecorrespondingspaceofcom- pactlysupportedGSFcontainsextensionsofallColombeaugeneralizedfunctions, andhencealsoofallSchwartzdistributions.Finally,inthesespacesitispossibleto provetheBanachfixedpointtheoremandacorrespondingPicard-Lindelo¨ftheorem, see[37]. 2 Local inverse function theorems As in the case of classical smoothfunctions,any infinitesimalcriterionfor the in- vertibilityofgeneralizedsmoothfunctionswillrelyonthe invertibilityofthe cor- responding differential. We therefore note the following analogue of [24, Lemma 1.2.41](whoseprooftransfersliterallytothepresentsituation): Lemma4.LetA∈r Rn×nbeasquarematrix.Thefollowingareequivalent: (i) Aisnondegeneerate,i.e.,x ∈r Rn,x tAh =0∀h ∈r Rnimpliesx =0. (ii) A:r Rn→r Rn isinjective. e e (iii) A:r Rn→r Rn issurjective. e e (iv) det(A)isinvertible. e e Theorem6.Let X ⊆r Rn, let f ∈r GC¥ (X,r Rn) andsupposethatfor some x in 0 the sharp interior of X, Df(x ) is invertible in L(r Rn,r Rn). Then there exists a e 0 e sharp neighborhoodU ⊆X ofx anda sharp neighborhoodV of f(x ) such that 0 0 f :U →V isinvertibleand f−1∈r GC¥ (V,U). e e Proof. Thm. 2.(vi) entails that f can be defined by a globally defined net fe ∈ C¥ (Rn,Rn). Hadamard’s inequality (cf. [11, Prop. 3.43]) implies |Df(x )−1| ≥ 0 n 1|det(Df(x )−1)|,whereC∈R isa universalconstantthatonlydependson C 0 >0 q the dimension n. Thus, by Lemma 4 and Lemma 1, detDf(x ) and consequently 0 alsoa:=|Df(x )−1|isinvertible.Next,pickpositiveinvertiblenumbersb,r∈r R 0 suchthatab<1,B (x )⊆X and 2r 0 e |Df(x )−Df(x)|<b 0 10 PaoloGiordanoandMichaelKunzinger for all x ∈B (x ). Such a choice of r is possible since every derivative of f is 2r 0 continuous with respect to the sharp topology (see Thm. 2.(iv) and Thm. 3.(iii)). Pickrepresentatives(ae ),(be )and(re )ofa,bandrsuchthatforalle ∈I wehave be >0,ae be <1,andre >0.Let(x0e )bearepresentativeofx0.Since[Bre (x0e )]⊆ B2r(x0), by Lemma 2 we can also assume that Bre (x0e ) ⊆ W e , and |Dfe (x0e )− Dfe (x)|<be forall x∈Ue :=Bre (x0e ). Nowlet ce := 1−aaeebe . Thenc:=[ce ]>0 andby[13,Th.6.4]weobtainforeache ∈I: (a) Forallx∈Ue :=Bre (x0e ),Dfe (x)isinvertibleand|Dfe (x)−1|≤ce . (b) Ve := fe (Bre (x0e ))isopeninRn. (c) fe |Ue :Ue −→Ve isadiffeomorphism,and (d) settingy0e := fe (x0e ),wehaveBre/ce (y0e )⊆ fe (Bre (x0e )). ThesetsU :=hUe i=Br(x0)⊆X andV :=hVe iaresharpneighborhoodsofx0 and f(x0),respectively,by(d),andsoitremainstoprovethat[fe |U−e1(−)]∈r GC¥ (V,U). Wefirstnotethatby(a),|Dfe (x)−1|≤ce forallx∈Bre (x0e ),whichbyHadamard’s inequalityimplies 1 |det(Dfe (x))|≥C·cne (x∈Bre (x0e )). (1) Nowfor[ye ]∈V and1≤i,j≤nwehave(seee.g.[11,(3.15)]) 1 ¶ j(fe−1)i(ye )= det(Dfe (fe−1(ye )))·Pij((¶ sfer(fe−1(ye )))r,s), (2) where P is a polynomial in the entries of the matrix in its argument. Since ij [fe−1(ye )]∈U ⊆X,itfollowsfrom(1)andthefactthat f|U ∈r GC¥ (U,r Rn)that (¶ j(fe−1)i(ye ))∈Rnr . e Higherorderderivativescanbetreatedanalogously,therebyestablishingthatevery derivativeof ge := fe |−1 is moderate.To provethe claim, it remainsto show that Ue [ge (ye )]∈U=hUe iforall[ye ]∈V =hVe i.Sincege :Ve −→Ue ,weonlyprovethat if(xe )∼r (ge (ye )),thenalsoxe ∈Ue fore small.Wecansetye′ := fe (xe )because fe is defined on the entire Rn. By the mean value theorem applied to fe and the moderatenessof f′,weget |ye′ −ye|=|fe (xe )−fe(ge (ye ))|≤r eN·|xe −ge(ye )|. Therefore(y′e )∼r (ye )andhencey′e ∈Ve andge(ye′)=xe ∈Ue fore small. ⊓⊔ FromThm.2.(iv),weknowthatanygeneralizedsmoothfunctionissharplycon- tinuous.Thusweobtain: Corollary1.Let X ⊆r Rn be a sharply open set, and let f ∈r GC¥ (X,r Rn) be suchthatDf(x)isinvertibleforeachx∈X.Then f isalocalhomeomorphismwith e e respecttothesharptopology.Inparticular,itisanopenmap.