loading

Logout succeed

Logout succeed. See you again!

ebook img

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) PDF

pages45 Pages
release year2014
file size3 MB
languageEnglish

Preview Lewis Base Catalysis: the Aldol Reaction (Scott Denmark)

Lewis  Base  Catalysis:  the  Aldol   Reaction  (Scott  Denmark)   Tom  Blaisdell   Friday,  January  17th  2014   Topic  Talk Scott  E.  Denmark   1975  -­‐  S.B.  in  Chemistry  –  MIT  (Richard  H.  Holm  and  Daniel  S.  Kemp)   1980  -­‐  D.Sc  in  Chemistry  -­‐  ETH  Zurich  (Albert  Eschenmoser)   1980  -­‐  Assistant  Professor  -­‐  University  of  Illinois   1986  -­‐  Associate  Professor  -­‐  University  of  Illinois   1987  -­‐  Professor  -­‐  University  of  Illinois   1991  -­‐  Reynold  C.  Fuson  Professor  of  Chemistry  -­‐  UIUC   Main  Research  Interests:   •  Lewis  Base  Activation  of  Lewis  Acids   •  Palladium-­‐Catalyzed  Cross-­‐Coupling  of  Organosilicon  Compounds   •  Tandem  Cycloaddition  Chemistry  of  Nitroalkenes   •  Asymmetric  Phase  Transfer  Catalysis/Chemoinformatics   Aldol  Chemistry:  Mid-­‐1990s  to  mid-­‐2000s The  Aldol  Reaction   •  One  of  the  most  ubiquitous  reactions  in  organic  chemistry   •  Provides  numerous  selectivity  challenges  (chemo-­‐,  site-­‐,  enantio-­‐  and   diastereoselectivity)   •  “…continues  to  serve  as  a  platform  for  the  demonstration  of  conceptual   advances  in  the  ^ield  [of  organic  chemistry]” The  Aldol  Reaction   OTMS O OH H TiCl 4 82% Ph 3:1 syn:anti PhCHO Mukiyama, T. Chem. Lett. 1973, 9, 1011 O OB(nBu)2 O O OH Me PhCHO N N Ph >500:1 syn:anti O O Me Evans, D. J. Am. Chem. Soc. 1981, 103, 2127 Formation  of  Enoxyborinates  and  Enoxysilanes   OB(nBu) OTMS 2 R R 1 1 R R 2 2 Enoxyborinates Enoxysilanes •  Most  stable  and  widely  used  enolates     •  Allowed  for  identi^ication  of  which  carbonyl  was  acting  as  the   nucleophile  (site  and  chemoselectivity)   •  Both  have  unique  reactivity  (diastereo-­‐  and  enantioselectivity) Enoxyborinates   •  Coordination  of  the  aldehyde  to  the  boron  is  necessary   •  Proceeds  through  a  predictable  chair-­‐like  transition  state   PhCHO OB(nBu) O OH 2 CH Cl 2 2 Me 77% yield Et Et Ph Et O >97:3 syn/anti H 2 Me -78-0 °C >97:3 Z/E Et nBu H B O nBu H O Ph Me nHex B O PhCHO O OH CH Cl 2 2 Ph 4:96 syn/anti Et O 2 -78-0 °C cPent H B O nHex O Ph H Evans,  D.  J.  Am.  Chem.  Soc.  1981,  103,  3099-­‐3111 Enoxysilanes   •  Unlike  boron,  the  silicon  atom  is  not  lewis  acidic  enough  to  bind  and   activate  the  aldehyde.       •  Cannot  form  a  six-­‐membered  transition  state   •  Requires  a  secondary  Lewis  acid  for  activation  and  therefore  undergo   an  open  transition  state   PhCHO OTMS O OH BF -OEt 3 2 Me 62% yield Et Et Ph CH Cl 60:40 syn/anti H 2 2 Me -78 °C >99:1 Z/E OTMS PhCHO O OH SnCl 2 82% yield Ph 70:30 anti/syn TMSCl CH Cl 2 2 -78 °C Heathcock,  C.  Tetrahedron  Le7.  1984,  25,  5973-­‐5976   Mukiyama,  T.  Chem.  Le7.,  1987,  463-­‐466 Enoxysilanes   OTMS NH PhChO O OTMS NH Sn(OTf)2 (20 mol %) EtS + EtS Ph EtCN Me Me 77% 92:8 syn/anti 20 mol % 95:5 e.r. Ph O CO H OTMS 2 O OTMS O O PhChO Me + nBu nBu Ph O O EtCN Me B H 97% 20 mol % 93:7 syn/anti 97:3 e.r. Mukiyama,  T.  Chem.  Le7.,  1990,  1455-­‐1458   Yamamoto.  J.  Am.  Chem.  Soc.  1991,  113,  1041-­‐1042   Nelson,  Tetrahedron  Asymmetry,  1998,  9,  357-­‐389 Denmark’s  Approach   •  Combining  the  inherient  properties  of  both  enoxyborinates  and   enoxysilanes   –  Enoxyborinates:  Predictable  six-­‐membered  TS  to  control   diasteroselectivity   –  Enoxysilanes:  Able  to  establish  asymmetric  control     1.  Enoxysilacyclobutanes   Si O tBu R   Me 2.  Lewis  base  catalysis  as  a  means  of  activating  the  metal  center     LB* ML n O R Me

See more

The list of books you might like