loading

Logout succeed

Logout succeed. See you again!

ebook img

MatLab&Simulink Radar Toolbox User's Guide PDF

pages1096 Pages
release year2022
file size20.387 MB
languageEnglish

Preview MatLab&Simulink Radar Toolbox User's Guide

Radar Toolbox User's Guide R2022b How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral Technical support: www.mathworks.com/support/contact_us Phone: 508-647-7000 The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098 Radar Toolbox User's Guide © COPYRIGHT 2021–2022 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc. Trademarks MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. Patents MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information. Revision History March 2021 Online only New for Version 1.0 (R2021a) September 2021 Online only Revised for Version 1.1 (R2021b) March 2022 Online only Revised for Version 1.2 (R2022a) September 2022 Online only Revised for Version 1.3 (R2022b) Contents Featured Examples 1 Radar Architecture: System Components and Requirements Allocation (Part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Radar Architecture: Test Automation and Requirements Traceability (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Benchmark Trajectories for Multi-Object Tracking . . . . . . . . . . . . . . . . . 1-35 Simulate Radar Ghosts Due to Multipath Return . . . . . . . . . . . . . . . . . . . 1-45 Highway Vehicle Tracking with Multipath Radar Reflections . . . . . . . . . 1-64 Track-to-Track Fusion for Automotive Safety Applications . . . . . . . . . . . 1-75 Track-to-Track Fusion for Automotive Safety Applications in Simulink . 1-90 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93 Increasing Angular Resolution with Virtual Arrays . . . . . . . . . . . . . . . . 1-109 Patch Antenna Array for FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1-118 Simultaneous Range and Speed Estimation Using MFSK Waveform . . 1-129 Automotive Adaptive Cruise Control Using FMCW Technology . . . . . . . 1-135 Radar Signal Simulation and Processing for Automated Driving . . . . . 1-147 Adaptive Tracking of Maneuvering Targets with Managed Radar . . . . . 1-158 Search and Track Scheduling for Multifunction Phased Array Radar . 1-175 PRF Agility Based on Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 1-194 Interference Mitigation Using Frequency Agility Techniques . . . . . . . . 1-200 Frequency Agility in Radar, Communications, and EW Systems . . . . . . 1-209 Waveform Scheduling Based on Target Detection . . . . . . . . . . . . . . . . . 1-218 Label Radar Signals with Signal Labeler . . . . . . . . . . . . . . . . . . . . . . . . . 1-223 iii Pedestrian and Bicyclist Classification Using Deep Learning . . . . . . . . 1-234 Radar Target Classification Using Machine Learning and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-250 Radar and Communications Waveform Classification Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-262 Spaceborne Synthetic Aperture Radar Performance Prediction . . . . . . 1-275 Airborne SAR System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-299 Stripmap Synthetic Aperture Radar (SAR) Image Formation . . . . . . . . 1-314 Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-325 Synthetic Aperture Radar System Simulation and Image formation . . 1-334 Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-339 Detector Performance Analysis Using ROC Curves . . . . . . . . . . . . . . . . 1-346 Monte Carlo ROC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-353 Assessing Performance with the Tracker Operating Characteristic . . . 1-361 Modeling Radar Detectability Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-381 MTI Improvement Factor for Land-Based Radar . . . . . . . . . . . . . . . . . . 1-399 Radar Link Budget Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-414 Planning Radar Network Coverage over Terrain . . . . . . . . . . . . . . . . . . 1-425 Maritime Radar Sea Clutter Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 1-436 Radar Scenario Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-454 Use theaterPlot to Visualize Radar Scenario . . . . . . . . . . . . . . . . . . . . . 1-464 Simulate a Scanning Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-469 Simulate Passive Radar Sensors and Radar Interferences . . . . . . . . . . 1-485 Introduction to Micro-Doppler Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 1-503 Ground Clutter Mitigation with Moving Target Indication (MTI) Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-518 Simulating a Polarimetric Radar Return for Weather Observation . . . 1-525 Clutter and Jammer Mitigation with STAP . . . . . . . . . . . . . . . . . . . . . . . 1-543 iv Contents Introduction to Space-Time Adaptive Processing . . . . . . . . . . . . . . . . . . 1-548 Acceleration of Clutter Simulation Using GPU and Code Generation . 1-564 Modeling Target Radar Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-568 Simulating Bistatic Polarimetric Radar . . . . . . . . . . . . . . . . . . . . . . . . . 1-581 Simulating a Bistatic Radar with Two Targets . . . . . . . . . . . . . . . . . . . . 1-587 Modeling a Wideband Monostatic Radar in a Multipath Environment 1-594 Extended Target Tracking with Multipath Radar Reflections in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-600 Radar Vertical Coverage over Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-610 SAR Target Classification using Deep Learning . . . . . . . . . . . . . . . . . . . 1-619 Automatic Target Recognition (ATR) in SAR Images . . . . . . . . . . . . . . . 1-627 Introduction to Pulse Integration and Fluctuation Loss in Radar . . . . 1-637 Introduction to Scanning and Processing Losses in Pulse Radar . . . . . 1-649 Modeling Target Position Errors Due to Refraction . . . . . . . . . . . . . . . . 1-664 Modeling the Propagation of Radar Signals . . . . . . . . . . . . . . . . . . . . . . 1-677 Display Micro-Doppler Shift of Moving Bicyclist . . . . . . . . . . . . . . . . . . 1-698 Radar Performance Analysis over Terrain . . . . . . . . . . . . . . . . . . . . . . . . 1-701 Create Physics-Based Radar Model from Statistical Model . . . . . . . . . . 1-710 Doppler Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-717 Constant False Alarm Rate (CFAR) Detection . . . . . . . . . . . . . . . . . . . . . 1-723 Waveform Parameter Extraction from Received Pulse . . . . . . . . . . . . . . 1-732 Lidar and Radar Fusion in Urban Air Mobility Scenario . . . . . . . . . . . . 1-745 Introduction to Radar Scenario Clutter Simulation . . . . . . . . . . . . . . . . 1-764 Simulating Radar Returns from Moving Sea Surfaces . . . . . . . . . . . . . . 1-782 Simulated Land Scenes for Synthetic Aperture Radar Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-801 Simulate Radar Detections of Surface Targets in Clutter . . . . . . . . . . . 1-816 Generate Clutter and Target Returns for MTI Radar . . . . . . . . . . . . . . . 1-833 v Quality-of-Service Optimization for Radar Resource Management . . . 1-853 Design and Simulate an FMCW Long-Range Radar (LRR) . . . . . . . . . . 1-875 ERS SAR Raw Data Extraction And Image Formation . . . . . . . . . . . . . . 1-901 Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-908 Predict Surface Clutter Power in Range-Doppler Space . . . . . . . . . . . . 1-911 Simulate a Maritime Radar PPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-936 Maritime Clutter Removal with Neural Networks . . . . . . . . . . . . . . . . . 1-946 FMCW Radar Altimeter Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-954 Simulating Radar Signals with Atmospheric Refraction Effects . . . . . . 1-982 Multibeam Radar for Adaptive Search and Track . . . . . . . . . . . . . . . . . . 1-994 Simulate FMCW Interference Between Automotive Radars . . . . . . . . 1-1014 Simulink Examples 2 Using the Radar Data Generator Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Clutter 3 Clutter Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Surface Clutter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Approaches for Clutter Simulation or Analysis . . . . . . . . . . . . . . . . . . . . . 3-2 Considerations for Setting Up a Constant Gamma Clutter Simulation . . . . 3-2 Related Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Interference 4 Barrage Jammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Support for Modeling Barrage Jammer . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Model Barrage Jammer Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Model Effect of Barrage Jammer on Target Echo . . . . . . . . . . . . . . . . . . . . 4-3 vi Contents Radar Equation 5 Radar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Radar Equation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Plot Vertical Coverage Pattern Using Default Parameters . . . . . . . . . . . . . 5-3 Compute Peak Power Using Radar Equation Calculator App . . . . . . . . . . . 5-4 Measurement Accuracy and Resolution 6 Measurement Accuracy, Bias, and Resolution . . . . . . . . . . . . . . . . . . . . . . 6-2 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 Model Platform Motion Using Trajectory Objects 7 Model Platform Motion Using Trajectory Objects . . . . . . . . . . . . . . . . . . . . 7-2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 waypointTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 geoTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 kinematicTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13 Kalman Filters 8 Linear Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Measurement Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Filter Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 Built-In Motion Models in trackingKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Example: Estimate 2-D Target States Using trackingKF . . . . . . . . . . . . . . 8-6 Extended Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 State Update Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 Extended Kalman Filter Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 Predefined Extended Kalman Filter Functions . . . . . . . . . . . . . . . . . . . . 8-12 Example: Estimate 2-D Target States with Angle and Range Measurements Using trackingEKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 vii 1 Featured Examples • “Radar Architecture: System Components and Requirements Allocation (Part 1)” on page 1-4 • “Radar Architecture: Test Automation and Requirements Traceability (Part 2)” on page 1-20 • “Benchmark Trajectories for Multi-Object Tracking” on page 1-35 • “Simulate Radar Ghosts Due to Multipath Return” on page 1-45 • “Highway Vehicle Tracking with Multipath Radar Reflections” on page 1-64 • “Track-to-Track Fusion for Automotive Safety Applications” on page 1-75 • “Track-to-Track Fusion for Automotive Safety Applications in Simulink” on page 1-90 • “Automotive Adaptive Cruise Control Using FMCW and MFSK Technology” on page 1-93 • “Increasing Angular Resolution with Virtual Arrays” on page 1-109 • “Patch Antenna Array for FMCW Radar” on page 1-118 • “Simultaneous Range and Speed Estimation Using MFSK Waveform” on page 1-129 • “Automotive Adaptive Cruise Control Using FMCW Technology” on page 1-135 • “Radar Signal Simulation and Processing for Automated Driving” on page 1-147 • “Adaptive Tracking of Maneuvering Targets with Managed Radar” on page 1-158 • “Search and Track Scheduling for Multifunction Phased Array Radar” on page 1-175 • “PRF Agility Based on Target Detection” on page 1-194 • “Interference Mitigation Using Frequency Agility Techniques” on page 1-200 • “Frequency Agility in Radar, Communications, and EW Systems” on page 1-209 • “Waveform Scheduling Based on Target Detection” on page 1-218 • “Label Radar Signals with Signal Labeler” on page 1-223 • “Pedestrian and Bicyclist Classification Using Deep Learning” on page 1-234 • “Radar Target Classification Using Machine Learning and Deep Learning” on page 1-250 • “Radar and Communications Waveform Classification Using Deep Learning” on page 1-262 • “Spaceborne Synthetic Aperture Radar Performance Prediction” on page 1-275 • “Airborne SAR System Design” on page 1-299 • “Stripmap Synthetic Aperture Radar (SAR) Image Formation” on page 1-314 • “Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation” on page 1-325 • “Synthetic Aperture Radar System Simulation and Image formation” on page 1-334 • “Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform” on page 1-339 • “Detector Performance Analysis Using ROC Curves” on page 1-346 • “Monte Carlo ROC Simulation” on page 1-353 • “Assessing Performance with the Tracker Operating Characteristic” on page 1-361 • “Modeling Radar Detectability Factors” on page 1-381 • “MTI Improvement Factor for Land-Based Radar” on page 1-399 • “Radar Link Budget Analysis” on page 1-414 1 Featured Examples • “Planning Radar Network Coverage over Terrain” on page 1-425 • “Maritime Radar Sea Clutter Modeling” on page 1-436 • “Radar Scenario Tutorial” on page 1-454 • “Use theaterPlot to Visualize Radar Scenario” on page 1-464 • “Simulate a Scanning Radar” on page 1-469 • “Simulate Passive Radar Sensors and Radar Interferences” on page 1-485 • “Introduction to Micro-Doppler Effects” on page 1-503 • “Ground Clutter Mitigation with Moving Target Indication (MTI) Radar” on page 1-518 • “Simulating a Polarimetric Radar Return for Weather Observation” on page 1-525 • “Clutter and Jammer Mitigation with STAP” on page 1-543 • “Introduction to Space-Time Adaptive Processing” on page 1-548 • “Acceleration of Clutter Simulation Using GPU and Code Generation” on page 1-564 • “Modeling Target Radar Cross Section” on page 1-568 • “Simulating Bistatic Polarimetric Radar” on page 1-581 • “Simulating a Bistatic Radar with Two Targets” on page 1-587 • “Modeling a Wideband Monostatic Radar in a Multipath Environment” on page 1-594 • “Extended Target Tracking with Multipath Radar Reflections in Simulink” on page 1-600 • “Radar Vertical Coverage over Terrain” on page 1-610 • “SAR Target Classification using Deep Learning” on page 1-619 • “Automatic Target Recognition (ATR) in SAR Images” on page 1-627 • “Introduction to Pulse Integration and Fluctuation Loss in Radar” on page 1-637 • “Introduction to Scanning and Processing Losses in Pulse Radar” on page 1-649 • “Modeling Target Position Errors Due to Refraction” on page 1-664 • “Modeling the Propagation of Radar Signals” on page 1-677 • “Display Micro-Doppler Shift of Moving Bicyclist” on page 1-698 • “Radar Performance Analysis over Terrain” on page 1-701 • “Create Physics-Based Radar Model from Statistical Model” on page 1-710 • “Doppler Estimation” on page 1-717 • “Constant False Alarm Rate (CFAR) Detection” on page 1-723 • “Waveform Parameter Extraction from Received Pulse” on page 1-732 • “Lidar and Radar Fusion in Urban Air Mobility Scenario” on page 1-745 • “Introduction to Radar Scenario Clutter Simulation” on page 1-764 • “Simulating Radar Returns from Moving Sea Surfaces” on page 1-782 • “Simulated Land Scenes for Synthetic Aperture Radar Image Formation” on page 1-801 • “Simulate Radar Detections of Surface Targets in Clutter” on page 1-816 • “Generate Clutter and Target Returns for MTI Radar” on page 1-833 • “Quality-of-Service Optimization for Radar Resource Management” on page 1-853 • “Design and Simulate an FMCW Long-Range Radar (LRR)” on page 1-875 • “ERS SAR Raw Data Extraction And Image Formation” on page 1-901 1-2

See more

The list of books you might like