loading

Logout succeed

Logout succeed. See you again!

ebook img

Numerical approximation methods for stochastically modeled PDF

pages101 Pages
release year2011
file size1.34 MB
languageEnglish

Preview Numerical approximation methods for stochastically modeled

Numerical approximation methods for stochastically modeled biochemical reaction networks DavidF.Anderson∗ ∗[email protected] DepartmentofMathematics UniversityofWisconsin-Madison VirginiaTechColloquium February11th,2011 Outline 1. DiscussPoissonprocessandtimechanges. 2. Describe/developmodel–stochasticallymodeledreactionnetworks. 3. Numericalmethodsanderrorapproximation. 4. Mathematicalquestionfortoday: howdoweeffectivelyquantifyhowwell differentmethodsapproximatethecontinuoustimeMarkovchainmodel. 5. Discuss/usemulti-scalenatureofbiochemicalreactionnetworks. The Poisson process (cid:73) ThemodelsIamgoingtodiscussareasubsetoftheclassofmodels termedcontinuoustimeMarkovchains. (cid:73) ThesimplestcontinuoustimeMarkovchainisthePoissonprocess. (b) Now,putpointsdownonalinewithspacingequaltotheξ. i x x x x x x x x ↔ ↔ ←→ ξ ξ ξ ··· t 1 2 3 (cid:73) LetY(t)denotethenumberofpointshitbytimet. (cid:73) Inthefigureabove,Y(t)=6. Intuition: TheunitratePoissonprocessissimplythenumberofpointshit whenwerunalongthetimeframeatrateone. 25 20 λ = 1 15 10 5 00 5 10 15 20 The Poisson process APoissonprocess,Y(·),isamodelforaseriesofrandomobservations occurringintime. (a) Let{ξ}bei.i.d. exponentialrandomvariableswithparameterone. i 25 20 λ = 1 15 10 5 00 5 10 15 20 The Poisson process APoissonprocess,Y(·),isamodelforaseriesofrandomobservations occurringintime. (a) Let{ξ}bei.i.d. exponentialrandomvariableswithparameterone. i (b) Now,putpointsdownonalinewithspacingequaltotheξ. i x x x x x x x x ↔ ↔ ←→ ξ ξ ξ ··· t 1 2 3 (cid:73) LetY(t)denotethenumberofpointshitbytimet. (cid:73) Inthefigureabove,Y(t)=6. Intuition: TheunitratePoissonprocessissimplythenumberofpointshit whenwerunalongthetimeframeatrateone. The Poisson process APoissonprocess,Y(·),isamodelforaseriesofrandomobservations occurringintime. (a) Let{ξ}bei.i.d. exponentialrandomvariableswithparameterone. i (b) Now,putpointsdownonalinewithspacingequaltotheξ. i x x x x x x x x ↔ ↔ ←→ ξ ξ ξ ··· t 1 2 3 (cid:73) LetY(t)denotethenumberofpointshitbytimet. (cid:73) Inthefigureabove,Y(t)=6. Intuition: TheunitratePoissonprocessissimplythenumberofpointshit whenwerunalongthetimeframeatrateone. 25 20 λ = 1 15 10 5 00 5 10 15 20 60 50 λ = 3 40 30 20 10 00 5 10 15 20 The Poisson process Let (cid:73) Y beaunitratePoissonprocess. (cid:73) DefineY (t)≡Y(λt), λ ThenY isaPoissonprocesswithparameterλ. λ Intuition: ThePoissonprocesswithrateλissimplythenumberofpointshit (oftheunit-ratepointprocess)whenwerunalongthetimeframeatrateλ. Thus,wehave“changedtime”toconvertaunit-ratePoissonprocesstoone whichhasrateλ. The Poisson process Let (cid:73) Y beaunitratePoissonprocess. (cid:73) DefineY (t)≡Y(λt), λ ThenY isaPoissonprocesswithparameterλ. λ Intuition: ThePoissonprocesswithrateλissimplythenumberofpointshit (oftheunit-ratepointprocess)whenwerunalongthetimeframeatrateλ. Thus,wehave“changedtime”toconvertaunit-ratePoissonprocesstoone whichhasrateλ. 60 50 λ = 3 40 30 20 10 00 5 10 15 20 Keyproperty: Y(T +∆)−Y(T)=Poisson(∆). Thus  Z t+∆t ff P{Y (t+∆t)−Y (t)>0|F}=1−exp − λ(t)dt ≈λ(t)∆t. λ λ t t Points: 1. Wehave“changedtime”toconvertaunit-ratePoissonprocesstoone whichhasrateorintensityλ(t). 2. Willusemorecomplicatedtimechangesofunit-rateprocessestobuild modelsofinterest. The Poisson process Thereisnoreasonλneedstobeconstantintime,inwhichcase „Z t « Y (t)≡Y λ(s)ds λ 0 isaninhomogeneousPoissonprocess. Thus  Z t+∆t ff P{Y (t+∆t)−Y (t)>0|F}=1−exp − λ(t)dt ≈λ(t)∆t. λ λ t t Points: 1. Wehave“changedtime”toconvertaunit-ratePoissonprocesstoone whichhasrateorintensityλ(t). 2. Willusemorecomplicatedtimechangesofunit-rateprocessestobuild modelsofinterest. The Poisson process Thereisnoreasonλneedstobeconstantintime,inwhichcase „Z t « Y (t)≡Y λ(s)ds λ 0 isaninhomogeneousPoissonprocess. Keyproperty: Y(T +∆)−Y(T)=Poisson(∆).

See more

The list of books you might like