Logout succeed
Logout succeed. See you again!

Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause PDF
Preview Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause
Fast and Provably Good Seedings for k-Means Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser 1'064x 1.32% @ UP TO SPEEDUP RELATIVE ERROR COMPARED TO K-MEANS++ F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser 1'064x 1.32% @ UP TO SPEEDUP RELATIVE ERROR COMPARED TO K-MEANS++ + THEORETICAL GUARANTEES F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) SEEDING Find initial cluster centers F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) MANY LOCAL MINIMA MAY EXIST SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) MANY LOCAL MINIMA MAY EXIST SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution ENSURES THAT LOCAL MINIMUM IS REACHED