loading

Logout succeed

Logout succeed. See you again!

ebook img

Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause PDF

pages107 Pages
release year2016
file size4.03 MB
languageEnglish

Preview Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause

Fast and Provably Good Seedings for k-Means Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser 1'064x 1.32% @ UP TO SPEEDUP RELATIVE ERROR COMPARED TO K-MEANS++ F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s Teaser 1'064x 1.32% @ UP TO SPEEDUP RELATIVE ERROR COMPARED TO K-MEANS++ + THEORETICAL GUARANTEES F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) SEEDING Find initial cluster centers F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) MANY LOCAL MINIMA MAY EXIST SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution F a s t a n d P r o v a b l y G o o d S e e d i n g s f o r k - M e a n s k-Means clustering Most popular clustering approach (nonconvex) MANY LOCAL MINIMA MAY EXIST SEEDING FINE-TUNING Find initial cluster centers Iteratively improve solution ENSURES THAT LOCAL MINIMUM IS REACHED

See more

The list of books you might like