loading

Logout succeed

Logout succeed. See you again!

ebook img

Ordered groupoid quotients and congruences on inverse semigroups PDF

file size0.3 MB

Preview Ordered groupoid quotients and congruences on inverse semigroups

ORDERED GROUPOID QUOTIENTS AND CONGRUENCES ON INVERSE SEMIGROUPS 6 1 0 NOUFALYAMANI 2 n a J KingdomofSaudiArabia,MinistryofHigherEducation, 9 UniversityofDammam, 2 P.O.Box1982,Dammam31441,SaudiArabia. ] [email protected] R G . h t N.D.GILBERT a m [ 1 SchoolofMathematicalandComputerSciences v andtheMaxwellInstitutefortheMathematicalSciences, 4 Heriot-WattUniversity, 9 1 EdinburghEH144AS,U.K 8 [email protected] 0 . 1 0 6 ABSTRACT. WeintroduceapreorderonaninversesemigroupSassoci- 1 atedtoanynormalinversesubsemigroupN,thatliesbetweenthenatural : partialorderandGreen’sJ–relation.Thecorrespondingequivalencere- v lation(cid:39) isnotnecessarilyacongruenceonS,butthequotientsetdoes i N X inheritanaturalorderedgroupoidstructure. Weshowthatthisconstruc- r tionpermitsthefactorisationofanyinversesemigrouphomomorphism a into a composition of a quotient map and a star-injective functor, and thatthisdecompositionimpliesaclassificationofcongruencesonS.We give an application to the congruence and certain normal inverse sub- semigroupsassociatetoaninversemonoidpresentation. 2010MathematicsSubjectClassification. Primary: 20L05;Secondary18D15,18B40. Keywordsandphrases. inversesemigroup,congruence,normalsubsemigroup. TheauthorsgratefullyacknowledgesthesupportofaresearchgrantfromtheUniversity ofDammam. 1 INTRODUCTION LetS beaninversesemigroupwithsemilatticeofidempotentsE(S). Recall thatthenaturalpartialorder onS isdefinedby s (cid:54) t ⇐⇒ thereexists e ∈ E(S) with s = et. The natural partial order may be characterized in a number of alternative ways,including: • thereexistsf ∈ E(S)withs = tf, • s = ss−1t, • s = ts−1s. (see [6, Proposition 5.2.1]). In this paper, we shall generalize the natural partial order by introducing a preorder (cid:54) on S for any normal inverse N subsemigroup N: the natural partial order then corresponds to the minimal normal inverse subsemigroup E(S), and at the other extreme, the preorder associated to S itself is the J–preorder. Symmetrizing the preorder (cid:54) N yields an equivalence relation (cid:39) (the identity when N = E(S) and the N J–relation when N = S). However, this relation need not be a congru- ence, and so the set of equivalence classes S/ (cid:39) need not be an inverse N semigroup. However, we may investigate (cid:39) further by exploiting the relationship be- N tweeninversesemigroupsandorderedgroupoids. Anorderedgroupoidisa small category in which every morphism is invertible, equipped with a par- tial order on morphisms. (The definition is recalled in detail in section 1.) An inverse semigroup can be considered as an ordered groupoid in which the identities form a semilattice, and from any such ordered groupoid a corresponding inverse semigroup can be constructed. In the study of in- verse semigroups, it is often fruitful to extend the point of view to ordered groupoids, and this is a major theme of [8]. We show that the quotient set S/ (cid:39) always inherits a natural ordered groupoid structure. Moreover, to N any homomorphism φ : S → Σ of inverse semigroups, we associate its kernelK = {s ∈ S : sφ ∈ E(Σ)},andφthenfactorisesas S −→ S/ (cid:39) −→ Σ K withthemapS/ (cid:39) → Σastar-injectivefunctorfromtheorderedgroupoid K S/ (cid:39) toΣ(consideredasanorderedgroupoid). K Now any congruence ρ on an inverse semigroup determines a normal in- verse subsemigroup K, its kernel, which consists of all elements of S that are ρ–equivalent to idempotents. We compare the structures of the ordered groupoidS/ (cid:39) andthequotientinversesemigroupS/ρ,andweshowthat K 2 if(cid:39) isacongruence,thenitistheminimalcongruencewithkernelK. We K showhowtoclassifycongruencesbythefactorisation S −→ S/ (cid:39) −→ S/ρ K andlookatcertaincongruencesandtheirkernelsassociatedwithaninverse monoidpresentation,andtherelationshipsbetweenthem. 1. ORDERED GROUPOIDS AND INVERSE SEMIGROUPS AgroupoidGisasmallcategoryinwhicheverymorphismisinvertible. We consideragroupoidasanalgebraicstructurefollowing[5]: theelementsare the morphisms, and composition is an associative partial binary operation. The set of identities in G is denoted E(G), and an element g ∈ G has domaingg−1 andrangeg−1g. Anorderedgroupoid(G,(cid:54))isagroupoidGwithapartialorder(cid:54)satisfy- ingthefollowingaxioms: OG1 forallg,h ∈ G,ifg (cid:54) htheng−1 (cid:54) h−1, OG2 if g (cid:54) g ,h (cid:54) h and if the compositions g h and g h are 1 2 1 2 1 1 2 2 defined,theng h (cid:54) g h , 1 1 2 2 OG3 if g ∈ G and x is an identity of G with x (cid:54) gd, there exists a unique element (x|g), called the restriction of g to x, such that (x|g)(x|g)−1 = xand(x|g) (cid:54) g, Asaconsequenceof[OG3]wealsohave: OG3* if g ∈ G and y is an identity of G with y (cid:54) gr, there exists a unique element (g|y), called the corestriction of g to y, such that (g|y)−1(g|y) = y and(g|y) (cid:54) g, sincethecorestrictionofg toy maybedefinedas(y|g−1)−1. Let G be an ordered groupoid and let a,b ∈ G. If a−1a and bb−1 have a greatest lower bound (cid:96) ∈ E(G), then we may define the pseudoproduct of a and b in G as a ⊗ b = (a|(cid:96))((cid:96)|b), where the right-hand side is now a composition defined in G. As Lawson shows in Lemma 4.1.6 of [8], this is apartiallydefinedassociativeoperationonG. If E(G) is a meet semilattice then G is called an inductive groupoid. The pseudoproduct is then everywhere defined and (G,⊗) is an inverse semi- group. Ontheotherhand,givenaninversesemigroupS withsemilatticeof idempotentsE(S),thenS isaposetunderthenaturalpartialorder,andthe restrictionofitsmultiplicationtothepartialcomposition s·t = st ∈ S definedwhen s−1s = tt−1 3 gives S the structure of an ordered groupoid, with set of identities E(S). These constructions give an isomorphism between the categories of in- verse semigroups and inductive groupoids: this is the Ehresmann-Schein- Nambooripad Theorem [8, Theorem 4.1.8]. We call a product st ∈ S with s−1s = tt−1 a trace product. Any product in S can be expressed as a trace product,attheexpenseofchangingthefactors,sincest = stt−1 ·s−1st. Let e ∈ E(G). Then the star of e in G is the set star (e) = {g ∈ G : G gg−1 = e}. A functor φ : G → H is said to be star-injective if, for each e ∈ E(G), the restriction φ : star (e) → star (eφ) is injective. A star- G H injectivefunctorisalsocalledanimmersion. IfGisinductive,thenstar (e) G isjusttheGreenR–classofeintheinversesemigroup(G,⊗). 2. NORMAL INVERSE SUBSEMIGROUPS AND QUOTIENTS An inverse subsemigroup N of an inverse semigroup S is normal [13] if it isfull–thatis,ifE(N) = E(S)–andif,foralls ∈ S andn ∈ N,wehave s−1ns ∈ N. A normal inverse subsemigroup N of S determines a relation (cid:54) onS,definedusingthenaturalpartialorder(cid:54)onS,asfollows: N (2.1) s (cid:54) t ⇐⇒ thereexist a,b ∈ N suchthat a·s·b (cid:54) t. N Note the requirement that trace products occur here. We define the relation (cid:39) bysymmetrizing(cid:54) : N N (2.2) s (cid:39) t ⇐⇒ thereexist a,b,c,d ∈ N suchthat a·s·b (cid:54) t and c·t·d (cid:54) s N Lemma2.1. (a) Therelation(cid:54) isthenaturalpartialorder(cid:54)onS. E(S) (b) Therelation(cid:54) istheJ–preorder(cid:22) onS. S J (c) Ifs (cid:54) tinthenaturalpartialorderonS thens (cid:54) tforanynormal N inversesubsemigroupN ofS. (d) s (cid:54) eforsomee ∈ E(S)ifandonlyifs ∈ N. N (e) Ifs (cid:54) s2 thens ∈ N. N (f) Ifs (cid:54) tthenst−1 ∈ N. N (g) Therelation(cid:54) isapreorderonS andhence(cid:39) isanequivalence N N relationonS. Proof. (a) This is clear, since if e,f ∈ E(S), a trace product e·s·f is equaltos. (b) Ifa·s·b (cid:54) tthenaa−1 (cid:54) tt−1 anda−1a = ss−1. Hences (cid:22) t. On J the other hand, if s (cid:22) t then there exists p ∈ S with pp−1 (cid:54) tt−1 J 4 andp−1p = ss−1. Then p·s·(s−1 ·p−1 ·pp−1t) (cid:54) t andsos (cid:54) t. S (c) SinceN isfull,ss−1,s−1s ∈ N ands = ss−1 ·s·s−1s (cid:54) t. (d) Supposethata,b ∈ N witha·s·b (cid:54) e. Thereforea·s·b = f (cid:54) ewith f ∈ E(S),andthens = a−1a·s·bb−1 = a−1fb−1 ∈ N. Conversely, ifn ∈ N thennn−1 ·n·n−1 = nn−1 andson (cid:54) nn−1. N (e) Wehavea,b ∈ N witha·s·b (cid:54) s2 andsos (cid:54) a−1s2b−1. Therefore s = ss−1a−1s2b−1 anditfollowsthat s−1 = s−1ss−1 = s−1ss−1a−1s2b−1s−1 = (s−1a−1s)(sb−1s−1) ∈ N andsos ∈ N. (f) If a · s · b (cid:54) t then s = a−1a · s · bb−1 (cid:54) a−1tb−1 and so st−1 (cid:54) a−1(tb−1t−1) ∈ N. SinceN isfull,wededucethatst−1 ∈ N. (g) It is clear that (cid:54) is reflexive. Suppose that s,t,u ∈ S and that s (cid:54) t (cid:54) u. There exist a,b,p,q ∈ N such that a·s·b (cid:54) t and N N p·t·q (cid:54) u. Then(pa)s(bq) (cid:54) u,and(pa)s(bq)isthetraceproduct (pa)·s·(bq)since (pa)−1(pa) = a−1p−1pa = a−1tt−1a = a−1a = ss−1, and aa−1 (cid:54) tt−1. Similarly s−1s = (bq)(bq)−1. Therefore (pa)·s· (bq) (cid:54) uands (cid:54) u. N (cid:3) Corollary 2.2. The normal inverse subsemigroup N is determined by the preorder (cid:54) , and we obtain an order-preserving embedding of the poset N of normal inverse subsemigroups of S into the poset of preorders on S that containthenaturalpartialorder. Proof. Part(d)ofLemma2.1showsthat N = {s ∈ S : thereexists e ∈ E(S) with s (cid:54) e}. N (cid:3) Remark 2.3. Not every preorder containing the natural partial order arises fromanormalinversesubsemigroup. Considerthesymmetricinversemonoid I and define a preorder (cid:22) by α (cid:22) β ⇐⇒ d(α) ⊆ dβ where d(γ) is the n domain of γ ∈ I . Then α (cid:22) id for all α ∈ I , and so the normal inverse n n subsemigroup associated to (cid:22) is I itself, but (cid:22) is not the J–preorder on n I andsoisnotequalto(cid:54) . n In Wedenotethe(cid:39)–classofs ∈ S by[s] . N 5 Proposition2.4. (a) Ifn ∈ N thennn−1 (cid:39) n (cid:39) n−1 (cid:39) n−1n, N N N (b) Theequivalencerelation(cid:39) saturatesN, N (c) Theequivalencerelation(cid:39) determinesN as N (cid:91) N = [e] . N e∈E(S) (d) Ifs (cid:39) tthenss−1 (cid:39) tt−1,s−1s (cid:39) t−1t,ands−1 (cid:39) t−1. N N N N (e) The restriction of (cid:39) to E(S) coincides with Green’s J–relation N J inducedonE(S) = E(N), N (f) In the case N = S the relation (cid:39) coincides with Green’s J– S relationonS, (g) InthecaseN = E(S)therelation(cid:39) isthetrivialrelationonS. E(S) Proof. (a) If n ∈ N then n−1 ·n·n−1 = n−1 and n·n−1 ·n = n, and hence n (cid:39) n−1. Similarlynn−1·n·n−1 = nn−1 andnn−1·nn−1·n = n, N whencen (cid:39) nn−1. N (b) Suppose that s ∈ S and that for some n ∈ N we have s (cid:39) n. By N part (a) we may assume that n ∈ E(S): then there exist p,q ∈ N suchthatp·s·q (cid:54) n. Henceforsomee ∈ E(S)wehavep·s·q = e andsos = p−1 ·e·q−1 = p−1q−1 ∈ N. (c) Thisfollowsfromparts(a)and(b). (d) Suppose that s (cid:39) t, with a,b,c,d ∈ N as in (2.2). Then bb−1 = N s−1s, b−1b (cid:54) t−1t,dd−1 = t−1t,d−1d (cid:54) s−1s and so s−1s (cid:39) t−1t. N Similarlyss−1 (cid:39) tt−1. Sinceb−1·s−1·a−1 (cid:54) t−1andd−1·t−1·c−1 (cid:54) s−1,wealsohaves−1 (cid:39) t−1. (e) Ife (cid:39) f thenthereexista,b,p,q ∈ N witha·e·b (cid:54) f andp·f·q (cid:54) N e. Therefore we have a−1a = e and aa−1 (cid:54) f, and so e (cid:54) f. By JN symmetry f (cid:54) e and so e J f. Conversely, if e J f there JN N N exist m,n ∈ N with mm−1 (cid:54) f and m−1m = e,nn−1 (cid:54) e and n−1n = f. Thenm·e·m−1 (cid:54) f andn·f ·n−1 (cid:54) e,andsoe (cid:39) f. N (f) Thisfollowsfrompart(b)ofLemma2.1. (g) By Lemma 2.1(a), (cid:54) is the natural partial order , which is of E(S) courseanti-symmetric. (cid:3) However,(cid:39) neednotbeacongruenceonS. N Example2.5. 6 (a) InthesymmetricinversemonoidI ,letf : {1} → {2},letS bethe 4 inversesubsemigroup S = {id ,id ,id ,f,f−1,0} {1,3} {1} {2} of I , and let N = S. Then id = ff−1 (cid:39) f−1f = id . But 4 {1} S {2} id id = id is not (cid:39) –related to id id = 0. In this {1,3} {1} {1} S {1,3} {2} example,theposetofJ–classesisjustathree-elementchainandso isasemilattice. (b) Nowletg : {3} → {4}inI andletT betheinversesubsemigroup 4 ofI generatedby{id ,id ,f,g}. HeretheJ–classesdonot 4 {1,3} {2,4} form a semilattice, and so (cid:39) is not a congruence, and the quotient T T/ (cid:39) isnotaninversesemigroup: itistheposet T Following the notation in [1], we shall denote the quotient S/ (cid:39) by S//N N and let π : S → S//N be the quotient map. Our next result sets out the ordered groupoid structure on S//N: it is a special case of [1, Theorem 3.14],butthedescriptionissimplerforquotientsofinversesemigroupsand seemsworthstatingindetail. Theorem 2.6. For any inverse semigroup S and normal inverse subsemi- group N, the quotient set S//N is an ordered groupoid, with the following structure: (a) the identities are the classes [e] where e ∈ E(S), and a class [s] N N hasdomain[ss−1] ,range[s−1s] ,andinverse[s−1] . N N N (b) asaposet,E(S//N)isisomorphictoN/J . N (c) If s,t ∈ S and s−1s (cid:39) tt−1, then there exists a ∈ N with aa−1 (cid:54) N s−1s and a−1a = tt−1: the composition of [s] and [t] is then N N definedas[sat] . N (d) Theordering(cid:54) of(cid:39) –classesisgivenby N N [s] (cid:54) [t] ⇐⇒ thereexist a,b ∈ N suchthat a·s·b (cid:54) t. N N N Proof. Itfollowsfrompart(d)ofProposition2.4thatthedomainandrange of[s] anditsinverse[s]−1 arewell-defined. N N Supposethats,t ∈ S ands−1s (cid:39) tt−1 buthatwechooseanotherelement N z ∈ N with zz−1 (cid:54) s−1s and z−1z = tt−1. Then az−1z = att−1 = 7 aa−1a = aands−1sz = (s−1s)(zz−1)z = zz−1z = z. Hence sat = saz−1zt = saz−1s−1szt = (saz−1s−1)·szt (cid:39) szt N andsoforfixeds,tthe(cid:39) –classoftheelementsatdoesnotdependonthe N choice of a. We denote this class by s (cid:71) t. Suppose that s (cid:39) s and that N 1 we choose a ∈ N to form s (cid:71) t = [s a t] . There exist u,v ∈ N with 1 1 1 1 N u·s ·v (cid:54) s,andsovv−1 = s−1s (cid:62) a a−1. Then 1 1 1 1 1 (v−1a )(v−1a )−1 = v−1a a−1v (cid:54) v−1v (cid:54) s−1s 1 1 1 1 and (v−1a )−1(v−1a ) = a−1vv−1a = a−1a = tt−1. 1 1 1 1 1 1 Thereforewecanusetheelementv−1a toformtheclasss (cid:71) t = [sv−1a t] . 1 1 N Now sv−1s−1 = (sv−1v)(v−1s−1 = (us v)(v−1s−1 = u and since s−1s (cid:62) 1 1 1 1 v−1v,wehave sv−1a t = sv−1vv−1a t = sv−1s−1s a t = u·(s at) (cid:39) s a t 1 1 1 1 1 1 N 1 1 and so s (cid:71) t (cid:39) s (cid:71) t. Similarly, s (cid:71) t does not depend on the choice of N 1 the element t within its (cid:39) – class, and the product [s] ·[t] = [sat] is N N N N well-defined. Nowtherelations−1s (cid:39) tt−1 furnishesnotonlya ∈ N withaa−1 (cid:54) s−1s N and a−1a = tt−1 but also p ∈ N with pp−1 (cid:54) s−1s and pp−1 = tt−1. Considersaps−1 ∈ N: wehave (saps−1)(saps−1)−1 = saps−1sp−1a−1s−1 (cid:54) sapp−1a−1s−1 = (sat)(sat)−1 and (saps−1)−1(saps−1) = sp−1a−1s−1saps−1 = sp−1a−1aps−1 = sp−1ps−1 = ss−1 and, since (sat)(sat)−1 (cid:54) ss−1, we have ss−1 (cid:39) (sat)(sat)−1. There- N fore, [sat] has domain [ss−1] and range [t−1t] , and the composition N N N [s] ·[t] = [sat] doesgiveagroupoidstructureonS//N. N N N NowbyLemma2.1,(cid:54) inducesthegivenpartialorderonthe(cid:39) –classes, N N and it remains to show that this partial order makes S//N into an ordered groupoid. Now if a·s·b (cid:54) t then b−1 ·s−1 ·a−1 (cid:54) t−1 and so [s] (cid:54) [t] implies N N N that [s]−1 (cid:54) [t]−1. Now suppose that [s ] (cid:54) [s] ,[t ] (cid:54) [t] and that N n N 1 N N 1 N N the compositions [s] ·[t] and [s ]·[t ] exist. There exist m,n,u,v ∈ N N N 1 1 8 such that m·s ·m (cid:54) s and u·t ·v (cid:54) t: since [m·s ·n] = [s ] and 1 1 1 N 1 N [u·t ·v] = [t ] wemayaswellassumethats (cid:54) sandt (cid:54) t. 1 N 1 N 1 1 We now have a,p ∈ N with aa−1 (cid:54) s−1s,a−1a = tt−1 and b,q ∈ N with bb−1 (cid:54) s−1s ,b−1b = t t−1,qq−1 (cid:54) t t−1 andq−1q = s−1s . Now 1 1 1 1 1 1 1 1 s bt (cid:39) sab−1s−1 ·s bt = sab−1s−1s bt (cid:54) sat (cid:54) sat 1 1 N 1 1 1 1 1 1 andso[s ] ·[t ] = [s bt ] (cid:54) [sat] = [s] ·[b] . 1 N 1 N 1 1 N N N N Finally we suppose that [n] (cid:54) [ss−1] for some n ∈ N and s ∈ S. By N N N part (a) of Proposition 2.4 we may replace n bye = nn−1. Then there exist a,b ∈ N with a · e · b (cid:54) ss−1 and so aa−1 (cid:54) ss−1 and a−1a = e. Then the class [aa−1s] has domain [aa−1] = [e] and [aa−1s] (cid:54) [s] . We N N N N N N wishtoshowthat[aa−1s] istheunique(cid:39) –classwiththeseproperties. N N Suppose that [k] (cid:54) [s] and that [kk−1] = [e] . There exist u,v ∈ N N N N N N with u · k · v (cid:54) s and b,q ∈ N with bb−1 (cid:54) kk−1,b−1b = e,qq−1 (cid:54) e, and q−1q = kk−1. We have a ∈ N as in the previous paragraph. Then kvs−1 = u−1 andu−1uq−1 = q−1: hence k (cid:39) k ·vs−1uq−1a−1s = q−1a−1s = q−1a−1aa−1s N = q−1a−1 ·aqq−1a−1s (cid:39) = aqq−1a−1s (cid:54) aa−1s N andso[k] (cid:54) [aa−1s] . Bysymmetry,theyareequal. (cid:3) N N N Corollary 2.7. [1, Theorem 4.15] Given a homomorphism φ : S → Σ of inverse semigroups, let K = {s ∈ S : xφ ∈ E(Σ)}. Then K is a normal inversesubsemigroupofS,andφfactorisesasacomposition π κ S −→ S//K −→ Σ whereκ,definedby[s] κ = sφ,isastar-injectivefunctor. K Proof. The map κ is well-defined, since if [s] = [s(cid:48)] then, for some K K a,b ∈ K we have a · s · b (cid:54) s(cid:48). Now aφ = (a−1a)φ = (ss−1)φ and similarly, bφ = (s−1s)φ). It follows that (a · s · b)φ = sφ (cid:54) s(cid:48)φ. By symmetry,s(cid:48)φ (cid:54) sφ. To show that κ is a functor, suppose that [s] and [t] are composable in K K S//K. Thenthereexista,p ∈ K with aa−1 (cid:54) s−1s,a−1a = tt−1,pp−1 (cid:54) tt−1,p−1p = s−1s 9 and the composition of [s] and [t] is defined, as in Theorem 2.6, by K K [s] ·[t] = [sat] . Then K K K ([sat] )κ = (sat)φ = (sφ)(aφ)(tφ) K = (sφ)(a−1a)φ(tφ) (since a ∈ K) = (sφ)(tt−1)φ(tφ) = (sφ)(tφ) Now(sφ)(tφ)isatraceproduct(sφ)·(tφ)since (sφ)−1(sφ) = (s−1s)φ = (p−1p)φ = (pp−1)φ (since p ∈ K) (cid:54) (tt−1)φ = (tφ)(tφ)−1 andsimilarly (tφ)(tφ)−1 = (tt−1)φ = (a−1a)φ = (aa−1)φ (since a ∈ K) (cid:54) (s−1s)φ = (sφ)−1(sφ). Therefore (sφ)(tφ) is a trace product defined in the inductive groupoid (Σ,·)andκisafunctor. To show that κ is star-injective, suppose that for some u,v ∈ S we have [uu−1] = [vv−1] and uφ = vφ. We claim that u (cid:39) v. By symmetry, it K K K issufficienttoshowthatu (cid:54) v. Nowbypart(e)Proposition2.4thereexist K a,b ∈ K with aa−1 (cid:54) uu−1,a−1a = vv−1,bb−1 (cid:54) vv−1 and b−1b = uu−1. Then b·u·u−1b−1v = (buu−1b−1)v (cid:54) v and (u−1b−1v)φ = (u−1)φ(b−1b)φvφ (sinceb ∈ K) = (u−1b−1b)φvφ = (u−1φ)vφ = (uφ)−1vφ ∈ E(Σ) sinceuφ = vφ, andsou−1b−1v ∈ K andu (cid:54) v asrequired. (cid:3) k Corollary 2.8. The factorization of φ : S → Σ is unique, in the sense that ν if φ also factorizes as S → S//N → Σ with ν a star-injective functor, then N = K (andhenceν = κ.) Proof. If n ∈ N then by part (a) of Proposition 2.4, we have n (cid:39) nn−1 N andsonφ ∈ E(Σ). HenceN ⊆ K. 10

See more

The list of books you might like