Logout succeed
Logout succeed. See you again!

Proofs and Fundamentals PDF
Preview Proofs and Fundamentals
Undergraduate Texts in Mathematics Editorial Board S. Axler K.A. Ribet For other titles Published in this series, go to www.springer.com/series/666 Ethan D. Bloch Proofs and Fundamentals A First Course in Abstract Mathematics Second Edition Ethan D. Bloch Mathematics Department Bard College Annandale-on-Hudson, NY 12504 USA [email protected] Editorial Board S. Axler K.A.Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley San Francisco, CA 94132 Berkeley, CA 94720-3840 USA USA [email protected] [email protected] ISSN 0172-6056 ISBN 978-1-4419-7126-5 e-ISBN 978-1-4419-7127-2 DOI 10.1007/978-1-4419-7127-2 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011921408 © Springer Science+Business Media, LLC 2011 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) DedicatedtomywifeNancy,inappreciationofherloveandsupport Contents PrefacetotheSecondEdition........................................ xi PrefacetotheFirstEdition .......................................... xiv TotheStudent ..................................................... xix TotheInstructor ...................................................xxiii PartI PROOFS 1 InformalLogic................................................. 3 1.1 Introduction ............................................... 3 1.2 Statements ................................................ 4 1.3 RelationsBetweenStatements................................ 15 1.4 ValidArguments ........................................... 25 1.5 Quantifiers ................................................ 34 2 StrategiesforProofs............................................ 47 2.1 MathematicalProofs—WhatTheyAreandWhyWeNeedThem... 47 2.2 DirectProofs .............................................. 53 2.3 ProofsbyContrapositiveandContradiction..................... 57 2.4 Cases,andIfandOnlyIf .................................... 64 2.5 QuantifiersinTheorems ..................................... 70 2.6 WritingMathematics ....................................... 80 PartII FUNDAMENTALS 3 Sets........................................................... 91 3.1 Introduction ............................................... 91 3.2 Sets—BasicDefinitions ..................................... 93 viii Contents 3.3 SetOperations ............................................. 101 3.4 FamiliesofSets............................................ 109 3.5 AxiomsforSetTheory ...................................... 115 4 Functions ..................................................... 129 4.1 Functions ................................................. 129 4.2 ImageandInverseImage .................................... 140 4.3 CompositionandInverseFunctions ........................... 146 4.4 Injectivity,SurjectivityandBijectivity ......................... 154 4.5 SetsofFunctions........................................... 164 5 Relations...................................................... 171 5.1 Relations ................................................. 171 5.2 Congruence ............................................... 177 5.3 EquivalenceRelations....................................... 185 6 FiniteSetsandInfiniteSets...................................... 195 6.1 Introduction ............................................... 195 6.2 PropertiesoftheNaturalNumbers ............................ 196 6.3 MathematicalInduction ..................................... 201 6.4 Recursion ................................................. 212 6.5 CardinalityofSets.......................................... 221 6.6 FiniteSetsandCountableSets................................ 231 6.7 CardinalityoftheNumberSystems............................ 240 PartIII EXTRAS 7 SelectedTopics................................................. 251 7.1 BinaryOperations .......................................... 251 7.2 Groups ................................................... 257 7.3 HomomorphismsandIsomorphisms........................... 265 7.4 PartiallyOrderedSets....................................... 270 7.5 Lattices................................................... 280 7.6 Counting:ProductsandSums ................................ 288 7.7 Counting:PermutationsandCombinations ..................... 297 7.8 LimitsofSequences ........................................ 312 8 Explorations................................................... 323 8.1 Introduction ............................................... 323 8.2 GreatestCommonDivisors .................................. 324 8.3 DivisibilityTests ........................................... 326 8.4 Real-ValuedFunctions ...................................... 326 8.5 IterationsofFunctions ...................................... 327 8.6 FibonacciNumbersandLucasNumbers ....................... 328 8.7 FuzzySets ................................................ 330 Contents ix 8.8 YouAretheProfessor....................................... 332 Appendix:PropertiesofNumbers .................................... 341 References......................................................... 345 Index ............................................................. 351