Logout succeed
Logout succeed. See you again!

Pythagorean Triples, Complex Numbers, Abelian Groups and PDF
Preview Pythagorean Triples, Complex Numbers, Abelian Groups and
Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers AmnonYekutieli DepartmentofMathematics BenGurionUniversity email:[email protected] Notesavailableat http://www.math.bgu.ac.il/~amyekut/lectures written7June2015 AmnonYekutieli(BGU) PythagoreanTriples 1/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: c b a AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28