loading

Logout succeed

Logout succeed. See you again!

ebook img

Pythagorean Triples, Complex Numbers, Abelian Groups and PDF

pages121 Pages
release year2015
file size0.55 MB
languageEnglish

Preview Pythagorean Triples, Complex Numbers, Abelian Groups and

Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers AmnonYekutieli DepartmentofMathematics BenGurionUniversity email:[email protected] Notesavailableat http://www.math.bgu.ac.il/~amyekut/lectures written7June2015 AmnonYekutieli(BGU) PythagoreanTriples 1/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 c b a 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples 1. PythagoreanTriples APythagoreantripleisatriple(a,b,c)ofpositiveintegers,satisfying (1.1) a2+b2 = c2. Thereasonforthenameis,ofcourse,becausethesearethesidesofaright angledtriangle: c b a AmnonYekutieli(BGU) PythagoreanTriples 2/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28 1.PythagoreanTriples Wesaythatthetriples(a,b,c)and(a(cid:48),b(cid:48),c(cid:48))areequivalentifthe correspondingtrianglesaresimilar. Thismeansthatthereisapositivenumberr,suchthat (a(cid:48),b(cid:48),c(cid:48)) = (ra,rb,rc) or (a(cid:48),b(cid:48),c(cid:48)) = (rb,ra,rc). Clearlyr isrational. Wesaythatthetriple(a,b,c)isreducedifthegreatestcommondivisorof thesenumbersis1. Thetripleiscalledorderedifa ≤ b. Itiseasytoseethatanytriple(a,b,c)isequivalenttoexactlyonereduced orderedtriple(a(cid:48),b(cid:48),c(cid:48)). Exercise1.2. Let(a,b,c)beareducedorderedtriple. Thenc isodd,and a < b. AmnonYekutieli(BGU) PythagoreanTriples 3/28

See more

The list of books you might like