Logout succeed
Logout succeed. See you again!

Representation theory of algebraic groups and quantum groups PDF
Preview Representation theory of algebraic groups and quantum groups
Progress inMathematics Volume284 SeriesEditors HymanBass JosephOesterle´ AlanWeinstein Akihiko Gyoja Hiraku Nakajima Ken-ichi Shinoda Toshiaki Shoji Toshiyuki Tanisaki Editors Representation Theory of Algebraic Groups and Quantum Groups Editors AkihikoGyoja ToshiakiShoji NagoyaUniversity NagoyaUniversity GraduateSchoolofMathematics GraduateSchoolofMathematics Chikusa-ku Chikusa-ku Nagoya,464-8602 Nagoya,464-8602 Japan Japan [email protected] [email protected] HirakuNakajima ToshiyukiTanisaki KyotoUniversity OsakaCityUniversity ResearchInstitute GraduateSchoolofScience forMathematicalSciences Sumiyoshi-ku Kyoto,606-8502 Osaka,558-8585 Japan Japan [email protected] [email protected] Ken-ichiShinoda SophiaUniversity FacultyofScienceandTechnology DepartmentofInformation andCommunicationSciences Chiyoda-ku Tokyo,102-8554 Japan [email protected] ISBN978-0-8176-4696-7 e-ISBN978-0-8176-4697-4 DOI10.1007/978-0-8176-4697-4 SpringerNewYorkDordrechtHeidelbergLondon MathematicsSubjectClassification(2010):17B37,16Gxx,17B67,20C08,17B20,17B35,20G15, 22E65,14M15,14L30 (cid:2)c SpringerScience+BusinessMedia,LLC2010 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher (Springer ScienceCBusiness Media, LLC,233Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper www.birkhauser-science.com Contents Preface............................................................................... ix Program............................................................................. xi QuotientCategoriesofModularRepresentations.............................. 1 HenningHaahrAndersen Dipper–James–Murphy’sConjecturefor Hecke Algebras ofTypeBn........................................................................... 17 SusumuArikiandNicolasJacon OnDominoInsertionandKazhdan–LusztigCellsinTypeBn ............... 33 Ce´dricBonnafe´,MeinolfGeck,LacrimioaraIancu, andThomasLam RunnerRemovalMoritaEquivalences .......................................... 55 JosephChuangandHyoheMiyachi Appendix: ModuleCorrespondencesinRouquierBlocksofFiniteGeneral LinearGroups...................................................................... 81 AkihikoHidaandHyoheMiyachi Quantum gl , q-Schur Algebras and Their n Infinite/InfinitesimalCounterparts............................................... 93 JieDuandQiangFu CherednikAlgebrasforAlgebraicCurves......................................121 MichaelFinkelbergandVictorGinzburg ATemperley–LiebAnaloguefortheBMWAlgebra...........................155 G.I.LehrerandR.B.Zhang vii viii Contents GradedLieAlgebrasandIntersectionCohomology...........................191 G.Lusztig CrystalBaseElementsofanExtremalWeightModuleFixed byaDiagramAutomorphismII:CaseofAffineLieAlgebras ................225 SatoshiNaitoandDaisukeSagaki t-Analogsof q-Charactersof Quantum Affine Algebras ofTypeE6,E7,E8..................................................................257 HirakuNakajima Ultra-Discretization of the G.1/-Geometric Crystals 2 totheD.3/-PerfectCrystals.......................................................273 4 ToshikiNakashima OnHeckeAlgebrasAssociatedwithEllipticRootSystems ...................297 YoshihisaSaitoandMidoriShiota Green’s Formula with C(cid:3)-Action and Caldero–Keller’s FormulaforClusterAlgebras ....................................................313 JieXiaoandFanXu