Logout succeed
Logout succeed. See you again!

Reproducing kernels and symmetric operators PDF
Preview Reproducing kernels and symmetric operators
Reproducing kernels and symmetric operators A. Aleman, R. Martin, and W. Ross * Lille 2013 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 1/35 Main question When are two densely defined unbounded symmetric operators on a Hilbert space unitarily equivalent? Aleman,Martin,Ross (*) SymmetricOperators Lille2013 2/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35