Logout succeed
Logout succeed. See you again!

Research Article Application of Bipolar Fuzzy Sets in Graph Structures PDF
Preview Research Article Application of Bipolar Fuzzy Sets in Graph Structures
Hindawi Publishing Corporation Applied Computational Intelligence and SoξΈ Computing Volume 2016, Article ID 5859080, 13 pages http://dx.doi.org/10.1155/2016/5859080 Research Article Application of Bipolar Fuzzy Sets in Graph Structures MuhammadAkramandRabiaAkmal DepartmentofMathematics,UniversityofthePunjab,NewCampus,Lahore54590,Pakistan CorrespondenceshouldbeaddressedtoMuhammadAkram;[email protected] Received27November2015;Revised25December2015;Accepted28December2015 AcademicEditor:BaodingLiu CopyrightΒ©2016M.AkramandR.Akmal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. Agraphstructureisausefultoolinsolvingthecombinatorialproblemsindifferentareasofcomputerscienceandcomputational intelligencesystems.Inthispaper,weapplytheconceptofbipolarfuzzysetstographstructures.Weintroducecertainnotions, includingbipolarfuzzygraphstructure(BFGS),strongbipolarfuzzygraphstructure,bipolarfuzzyππ-cycle,bipolarfuzzyππ-tree, bipolarfuzzyππ-cutvertex,andbipolarfuzzyππ-bridge,andillustratethesenotionsbyseveralexamples.Westudyπ-complement, self-complement,strongself-complement,andtotallystrongself-complementinbipolarfuzzygraphstructures,andweinvestigate someoftheirinterestingproperties. 1.Introduction notionofafuzzygraphstructureanddiscussedsomerelated properties.Akrametal.[9β13]haveintroducedbipolarfuzzy Conceptsofgraphtheoryhaveapplicationsinmanyareasof graphs,regularbipolarfuzzygraphs,irregularbipolarfuzzy computer science including data mining, image segmenta- graphs, antipodal bipolar fuzzy graphs, and bipolar fuzzy tion, clustering, image capturing, and networking. A graph hypergraphs.Inthispaper,weintroducethecertainnotions structure,introducedbySampathkumar[1],isageneraliza- includingbipolarfuzzygraphstructure(BFGS),strongbipo- tion of undirected graph which is quite useful in studying lar fuzzy graph structure, bipolar fuzzy ππ-cycle, bipolar somestructuresincludinggraphs,signedgraphs,andgraphs fuzzyππ-tree,bipolarfuzzyππ-cutvertex,andbipolarfuzzy inwhicheveryedgeislabeledorcolored.Agraphstructure ππ-bridge and illustrate these notions by several examples. helps to study the various relations and the corresponding We present π-complement, self-complement, strong self- edgessimultaneously. complement, and totally strong self-complement in bipolar Afuzzyset,introducedbyZadeh[2],givesthedegreeof fuzzy graph structures, and we investigate some of their membership of an object in a given set. Zhang [3] initiated interestingproperties. the concept of a bipolar fuzzy set as a generalization of a Wehaveusedstandarddefinitionsandterminologiesin fuzzy set. A bipolar fuzzy set is an extension of fuzzy set this paper. For other notations, terminologies, and applica- whosemembershipdegreerangeis[β1,1].Inabipolarfuzzy tionsnotmentionedinthepaper,thereadersarereferredto set, the membership degree 0 of an element means that [1,5,7,14β18]. theelementisirrelevanttothecorrespondingproperty,the membership degree (0,1] of an element indicates that the 2.Preliminaries elementsomewhatsatisfiestheproperty,andthemembership degree [β1,0) of an element indicates that the element Inthissection,wereviewsomedefinitionsthatarenecessary somewhat satisfies the implicit counterproperty. Kauffman forthispaper. defined in [4] a fuzzy graph. Rosenfeld [5] described the A graph structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) consists of a structureoffuzzygraphsobtaininganalogsofseveralgraph nonemptysetπtogetherwithrelationsπΈ1,πΈ2,...,πΈπ onπ, theoretical concepts. Bhattacharya [6] gave some remarks which are mutually disjoint such that each πΈπ is irreflexive on fuzzy graphs. Several concepts on fuzzy graphs were and symmetric. If (π’,V) β πΈπ for some π, 1 β€ π β€ π, introducedbyMordesonetal.[7].Dinesh[8]introducedthe we call it an πΈπ-edge and write it as βπ’V.β A graph structure 2 AppliedComputationalIntelligenceandSoftComputing πΊβ = (π,πΈ1,πΈ2,...,πΈπ)iscomplete,if(i)eachedgeπΈπ, 1 β€ Definition 3 (see [8]). Let πΊ = (],π1,π2,...,ππ) be a fuzzy π β€ π,appearsatleastonceinπΊβ;(ii)betweeneachpairof graphstructureofagraphstructureπΊβ =(π,πΈ1,πΈ2,...,πΈπ). verticesπ’Vinπ,π’VisanπΈπ-edgeforsomeπ, 1 β€ π β€ π.A Then πΉ = (],π1,π2,...,ππ) is a partial fuzzy spanning graph structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) is connected, if the subgraphstructureofπΊifππ βππforπ=1,2,...,π. bowunenhtldiwyceherπΈelyπcn-ioenntdgwsgieogsstrvsafeoporrhftiosciosnemslcyoπ’enπΈπnaπ,-neeacddntegdVde,s.siiIfsmontrihalsaeogrmrplyaa,eptπΈhhπ.π-wsActryhugcirlcceahtupisrhceot,snhtπΈrseuiπs-cctptysauctorlheef ibDseesfiaanifdiuttziooznybg4era(aspπehπe-es[dt8rg]u)e.cotLuferπΊet.πΊofβπΊbβe.aIfgπ₯rπ¦apβhssutrpupc(tπuπr)e,tahnednlβeπ₯tπ¦πΊβ tisshtraeutucrtneuedrieefrilityniidsnucgocgenrdnapebchyteisπΈdaπa-tnerddegece.osπΊniβtsaiiasnastnrneπΈoe.πc-Styricemlee,ioliafrrtelhyqe,usπΊiuvβbagliersnatpalnhy aDfeufiznziytiognra5ph(sseteru[8c]t)u.reThπΊeisstβreππn=g1πthπ(π₯ofπβa1π₯πππ-)pfaotrhππ₯=0π₯11,2β β ,β .π₯..π,oπf. AπΈin1dπΈgur2caβ epβ dhβ πΈbsπyt-rtuπΈrceπt-eue,driegfeπΊissβisainas aπΈfonπr-efπΈsotπr,-ettsrhte,aetiffiostr,hieefaisctuhhbgπa,rsan1pohβ€πΈstπrπ-ucycβ€ctulerπse.. Dππeβfiπnπi(tπ₯ioπ¦n)6=(sβeeπ§{[π8π]()π₯.π§I)nβ§aπfπu(π§zπ¦zy)}g,rπaππp(hπ₯π¦s)tr=uc(tπuππrβe1πΊβ,ππππ2)((π₯π₯π¦π¦))== Letπ β π;thenthesubgraphstructureβ¨πβ©inducedbyπhas βπ§{πππβ1(π₯π§)β§ππ(π§π¦)},π = 2,3,...,π,foranyπ β₯ 2.Also vertexsetπ,wheretwoverticesπ’andVinβ¨πβ©arejoinedby πβ(π₯π¦)=β{ππ(π₯π¦), π=1,2,...}. an πΈπ-edge, 1 β€ π β€ π, if and only if, they are joined by π π an πΈπ-edge in πΊβ. For some π, 1 β€ π β€ π, the πΈπ-subgraph Definition 7 (see [8]). Let π₯π¦ be a ππ-edge of πΊ = ionfdπΊuβce,djobinyiπngisvdeerntiocteesdibnyππΈ.πI-fβ¨ππβ©.iIstahassuobnselyt tohfoesdegπΈeπ-seedtgiens s(]p,aπn1n,iπn2g,.s.u.b,πgπr)a.phLesttru(c]t,uπr1σΈ e,πo2σΈ b,t.a.i.n,eπdπσΈ )bybdeelaetipnagrtβiπ₯aπ¦lβfuwzizthy πΊβ,thensubgraphstructureβ¨πβ©inducedbyπhasthevertex ππσΈ (π₯π¦) = 0andππσΈ (π₯1π¦1) = ππ(π₯1π¦1) βππ-edges(π₯1π¦1)other sπΊgerβat,p=βhths(teπrue1cn,tπΈdu1rv,eeπΈs.r2tTh,ic.e.e.sn,iπΈπΊnπβπ)aβna,ndwdπ»hπ»oβsβaeree=disg(oeπms2oa,rπΈrep1σΈ h,tihπΈco2,σΈ ,sif.e(.ii.n),ππΈππσΈ .=)Lbπeet, π₯thπ¦anis(aπ₯π,ππ¦-)b.rIifdπgπβe.(π’V)>ππσΈ β(π’V)forsomeπ’Vβsupp(ππ),then (πii):th{eπΈr1e,πΈex2i,s.t..a,πΈbiπj}ectβion π{πΈ1σΈ :,πΈπ2σΈ 1,..β.,πΈπσΈ π},2saanydπΈaπ bβijectiπΈoπσΈ n, Dfuezfiznyistiuobng8ra(psehes[t8r]u)c.tuLreetπΊobσΈ t=ain(]e,dπb1σΈ ,yπd2σΈ ,e.le.t.i,nπgπσΈ )vberettehxeπ€paorftiπΊal, 1 β€ π,π β€ π, such that for all π’,V β π1, π’V β πΈπ implies thatis,]σΈ (π€)=0and]σΈ (V)=](V) βV=ΜΈπ€, ππσΈ (Vπ€)=0 βVβ thatπ(π’)π(V)βπΈπσΈ . ππ and ππσΈ (π’V) = ππ(π’V) βπ’V =ΜΈ π€V, π = 1,2,...,π. Then a (π,πΈT1σΈ w,oπΈ2σΈ g,r.a.p.h,πΈstπσΈ r)u,cotnurtehseπΊsβam=e(vπe,rπΈte1x,πΈse2t,.π..,,aπΈreπ)idaenndtiπ»caβl,=if vπ’e,rVtewxitπ€hoπ’f,VπΊ=isΜΈπ€a.ππ-cutvertexifππβ(π’V)>ππσΈ β(π’V)forsome thereexistsabijectionπ:π β π,suchthatforallπ’andVin π,π’VisanπΈπ-edgeinπΊβ,thenπ(π’)π(V)isanπΈπσΈ -edgeinπ»β, Definition 9 (see [8]). πΊ = (],π1,π2,...,ππ) is a ππ-cycle if where1 β€ π β€ πandπΈπ β πΈπσΈ βπ.Letπbeapermutationon andonlyif(supp(]),supp(π1),supp(π2),...,supp(ππ))isaπΈπ- {πΈ1,πΈ2,...,πΈπ}.Thentheπ-cycliccomplementofπΊβ,denoted cycle. pbLyeert(mπΊπΊuββt)aπt=πi,oins(πoo,nbπΈt{a1πΈi,n1πΈ,e2πΈd,2.b,..y..,r.πΈe,πpπΈ)lπab}c;eitnhagengπΈrπabpyhπst(rπΈuπc)t,u1reβ€anπdβ€ππa. iDcsyeacfinlenπΈiiftπi-aocnnydc1lo0ena(lnysedieft(h[s8eu]rp)ep.e(πΊx]i)s,t=ssunp(o]p,u(ππn11i,)qπ,us2eu,.pβ.π₯p.π¦(,πβπ2πi)n),.sis.u.pa,psfu(uπpzπp)z(ysπuππc)πh-) (i)πΊβ is π-self complementary, if πΊβ is isomorphic to thatππ(π₯π¦)=β{ππ(π’V)|π’Vβsupp(ππ)}. (cπΊomβ)pπlπe;mthenetπ,i-fcyπcl=icΜΈidcoemntpitleympeenrmtouftaπΊtiβonan.dπΊβ isself- Definition 11 (see [8]). πΊ = (],π1,π2,...,ππ) is a fuzzy ππ- tree if it has a partial fuzzy spanning subgraph structure, (ii)πΊβisstrongπ-selfcomplementary,ifπΊβisidenticalto πΉπ =(],π1,π2,...,ππ),whichisaππ-treewhereforallππ-edges (πΊβ)ππ;theπ-complementofπΊβandπΊβisstrongself- notinπΉπ,ππ(π₯π¦)<ππβ(π₯π¦). complement,ifπ=ΜΈidentitypermutation. Definition 12 (see [8]). Let πΊβ = (π,πΈ1,πΈ2,...,πΈπ) be a Definition 1 (see [2]). A fuzzy subset π on a set π is a map graph structure and let ],π1,π2,...,ππ be the fuzzy subsets π:π β [0,1].Afuzzybinaryrelationonπisafuzzysubset ofπ,πΈ1,πΈ2,...,πΈπ,respectively,suchthat πonπΓπ.Byafuzzyrelationwemeanafuzzybinaryrelation 0β€π (π₯π¦)β€π(π₯)β§π(π¦) givenbyπ:πΓπ β [0,1]. π (2) βπ₯,π¦βπ, π=1,2,...,π. gDreafipnhitsiotrnuc2tu(rseeean[d8]l)e.tL]e,tπ1πΊ,πβ2,.=..,(πππ,bπΈe1,tπΈhe2,f.u.z.z,yπΈπs)ubbseetas ThenπΊ=(],π1,π2,...,ππ)isafuzzygraphstructureofπΊβ. ofπ,πΈ1,πΈ2,...,πΈπ,respectively,suchthat Definition 13 (see [3]). Let π be a nonempty set. A bipolar 0β€π (π₯π¦)β€π(π₯)β§π(π¦) fuzzysetπ΅inπisanobjecthavingtheform π (1) βπ₯,π¦βπ, π=1,2,...,π. π΅={(π₯,ππ(π₯),ππ(π₯))|π₯βπ}, (3) π΅ π΅ ThenπΊ=(],π1,π2,...,ππ)isafuzzygraphstructureofπΊβ. whereππ΅π :π β [0,1]andππ΅π :π β [β1,0]aremappings. AppliedComputationalIntelligenceandSoftComputing 3 Weusethepositivemembershipdegreeππ΅π(π₯)todenote Ifπ»Μπ =(πσΈ ,π1σΈ ,π2σΈ ,...,ππσΈ )isabipolarfuzzygraphstructure the satisfaction degree of an element π₯ to the property ofπΊβsuchthat correspondingtoabipolarfuzzysetπ΅andthenegativemem- bershipdegreeππ(π₯)todenotethesatisfactiondegreeofan πππσΈ (π₯)β€πππ (π₯), π΅ element π₯ to some implicit counterproperty corresponding ππ (π₯)β₯ππ(π₯) toabipolarfuzzysetπ΅.Ifππ(π₯) =ΜΈ 0andππ(π₯) = 0,itisthe πσΈ π π΅ π΅ situationthatπ₯isregardedashavingonlypositivesatisfaction βπ₯βπ, fdooreπ΅s.nIoftπsπ΅πat(iπ₯s)fy=th0eapnrodpπeπ΅πrt(yπ₯o)f=π΅ΜΈ 0b,uittsiosmtheewshitautastaitoinsfitehsatthπ₯e πππσΈ (π₯π¦)β€πππ (π₯π¦), (7) counter property of π΅. It is possible for an element π₯ to be π π suchthatππ΅π(π₯) =ΜΈ 0andππ΅π(π₯) =ΜΈ 0whenthemembership ππππσΈ (π₯π¦)β₯ππππ(π₯π¦) functionofthepropertyoverlapsthatofitscounterproperty oversomeportionofπ. βπ₯π¦βπΈπ, π=1,2,...,π, For the sake of simplicity, we will use the symbol π΅ = (ππ,ππ)forthebipolarfuzzyset: thenπ»Μπ iscalledabipolarfuzzysubgraphstructureofBFGS π΅ π΅ πΊΜπ. π΅={(π₯,ππ΅π(π₯),ππ΅π(π₯))|π₯βπ}. (4) BFGS π»Μπ = (πσΈ ,π1σΈ ,π2σΈ ,...,ππσΈ ) is a bipolar fuzzy Definition14(see[3]). Letπbeanonemptyset.Thenwecall iansduubcseedtsπubogfraπphifstructureofπΊΜπ = (π,π1,π2,...,ππ),by amappingπ΄=(ππ,ππ):πΓπ β [0,1]Γ[β1,0]abipolar fuzzyrelationonππ΄sucπ΄hthatππ΄π(π₯,π¦)β[0,1]andππ΄π(π₯,π¦)β πππσΈ (π₯)=πππ (π₯), [β1,0]. ππ (π₯)=ππ(π₯) πσΈ π Definition15(see[9]). AbipolarfuzzygraphπΊ = (π,π΄,π΅) βπ₯βπ, is a nonempty set π together with a pair of functions π΄ = [(0π,π΄π1,]πΓπ΄π)[β:1π,0β]su[c0h,1th]aΓt[foβr1a,0ll]π₯a,nπ¦dβπ΅π=,(ππ΅π,ππ΅π):πΓπ β ππππσΈ (π₯π¦)=ππππ(π₯π¦), (8) ππ (π₯π¦)=ππ (π₯π¦) ππ΅π(π₯,π¦)β€min(ππ΄π(π₯),ππ΄π(π¦)), ππσΈ ππ (5) βπ₯,π¦βπ, π=1,2,...,π. ππ(π₯,π¦)β₯max(ππ(π₯),ππ(π¦)). π΅ π΄ π΄ Similarly, BFGS π»Μπ is a bipolar fuzzy spanning subgraph Noticethatππ΅π(π₯,π¦)>0,ππ΅π(π₯,π¦)<0for(π₯,π¦)βπΓπ, structureofπΊΜπifπσΈ =πand ππ(π₯,π¦)=ππ(π₯,π¦)=0for(π₯,π¦)βπΓπ,andπ΅issymmetric π΅ π΅ ππ β€ππ , relation. πσΈ π π π ππ β₯ππ, (9) 3.BipolarFuzzyGraphStructures πσΈ π π π Definition 16. πΊΜπ = (π,π1,π2,...,ππ) is called a bipolar π=1,2,...,π. fa(uπnzd,zπΈyf1og,rrπΈae2pa,ch.h.s.tπ,rπΈu=cπt)1u,irf2eπ,(.B..=F,Gπ(π;Sπππ)o,πfπ=πaπ(g)πriππaspπa,hπbππsiptπr)ouliacsrtaufurbezipz(oyGlsaSer)tfπΊounβzzπ=y {sEπux3caπhm4,tpπhl1aeπt41π8}.. C=o{nπs1i,dπe2r,πa3,gπr4a}p,hπΈs1tru=ct{uπr1eπ2πΊ,πβ2π=4},(aπn,dπΈ1πΈ,2πΈ2=) setonπΈπsuchthat (i) Let π,π1, and π2 be bipolar fuzzy subsets of π,πΈ1, ππ (π₯π¦)β€ππ (π₯)β§ππ (π¦), andπΈ2,respectively,suchthat π π π π π={(π ,0.5,β0.2),(π ,0.7,β0.3),(π ,0.4,β0.3), 1 2 3 ππ (π₯π¦)β₯ππ(π₯)β¨ππ(π¦) (6) π π π π (π ,0.7,β0.3)}, 4 βπ₯π¦βπΈ βπΓπ. (10) π π ={(π π ,0.5,β0.2),(π π ,0.7,β0.3)}, 1 1 2 2 4 Note that πππ (π₯π¦) = 0 = πππ(π₯π¦) for all π₯π¦ β π Γ π β πΈπ π ={(π π ,0.3,β0.2),(π π ,0.3,β0.1)}. and0 < πππ (ππ₯π¦) β€ 1,β1 β€ ππππ(π₯π¦) < 0 βπ₯π¦ β πΈπ,where 2 3 4 1 4 πandπΈπ (π π= 1,2,...,π)arecallπedunderlyingvertexsetand Then, by direct calculations, it is easy to see that πΊΜπ = underlyingπ-edgesetofπΊΜπ,respectively. (π,π1,π2)isaBFGSofπΊβasshowninFigure1. (ii) Consider π1 = {(π1,0.4,β0.1),(π2,0.5,β0.3),(π3, Definition17. LetπΊΜπ =(π,π1,π2,...,ππ)beabipolarfuzzy 0.4,β0.2),(π4,0.1,β0.3)}, π11 = {(π1π2,0.4,β0.1),(π2π4,0.1, graphstructureofagraphstructureπΊβ = (π,πΈ1,πΈ2,...,πΈπ). β0.2)}, and π12 = {(π3π4,0.1,β0.2),(π1π4,0.1,β0.0)}. Then, 4 AppliedComputationalIntelligenceandSoftComputing a1(0.5,β0.2) a2(0.7,β0.3) ABFGSπΊΜπ = (π,π1,π2,...,ππ)issaidtobestrong ifitis N(0.5,β0.2) ππ-strongBFGSforallπβ{1,2,3,...,π}. 1 Example22. ConsiderBFGSπΊΜπ = (π,π1,π2)asshownin 1) Figure3. (0.3,β0. (0.7,β0.3) stroThng.en πΊΜπ is a strong BFGS since it is both π1- and π2- N2 N 1 Definition 23. A BFGS πΊΜπ = (π,π1,π2,...,ππ) with N2(0.3,β0.2) underlyingvertexsetπissaidtobecompleteorπ1π2β β β ππ- a (0.7,β0.3) complete,ifthefollowingaretrue: 4 a (0.4,β0.3) 3 Figure1:πΊΜπ=(π,π1,π2). (i)πΊΜπaisstrongBFGS. (ii)supp(ππ)=ΜΈ0 βπ=1,2,3,...,π. a1(0.4,β0.1) a2(0.5,β0.3) (iii)Foreachpairofverticesπ₯,π¦ β π, π₯π¦isanππ-edge forsomeπ. N (0.4,β0.1) 11 N(0.1,β0.0)12 N 1(10.1,β0.2) {csEπtaxr2luacπMmuc3t}lpuao,tlarreieenoodnπΊ2vs4πΈeβ,.r2i,t=Ls=ieust(p{eππpaπΊ1,(sπΜπΈππy21,t1,oπ)=πΈ1s=π2e)ΜΈ3e0}(s,tπaushsuca,hsptπhpπΊto1(hΜπw,πaπitn2s2)πia)n=sΜΈFb=t0rieo,g{anuπBngr1Fed,BGπ4eF2S.v,GBeπrSoy3y.}fr,pogauπΈrita1ripno=hef verticesbelongingtoπiseitheranπ1-edgeoranπ2-edge. N12(0.1,β0.2) SoπΊΜπisacompleteBFGS,thatis,π1π2-completeBFGS. a4(0.1,β0.3) a3(0.4,β0.2) Definition25. LetπΊΜπ = (π,π1,π2,...,ππ)beaBFGSwith Figure2:BipolarfuzzysubgraphstructureπΎΜπ=(π1,π11,π12). underlyingvertexsetπ.Thenpositiveandnegativestrengths ofaππ-pathβππ =π1π2β β β ππβarecalledgainandlossofthat ππ-path and denπoted by πΊ.ππ and πΏ.ππ, respectively, such by routine calculations, it is easy to see that πΎΜπ = that π π (π1,π11,π12)isthebipolarfuzzysubgraphstructureofπΊΜπ π πΊ.π =β[ππ (π π )], asshowninFigure2. π π πβ1 π π π π=2 DThgreaefipnnhiπ₯tsiπ¦tornuβc1t9πΈu.rπeLiseotcfaπΊalΜπlger=dapa(πhbis,ptπorul1ac,rtπufur2e,z.zπΊ.y.β,ππ=π-πe()πdbg,eeπΈao1b,rπΈisp2iom,l.ap.r.lyf,uπΈπzπzπ)y-. πΏ.πππ =σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨πβπ=2ππππ(ππβ1ππ)σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨. (14) edge,if ππππ(π₯π¦)>0 or iEnxaFmigpulree246..WCeonnositdeetrhaatBπFπGS=πΊΜππ1π=3π(4ππ1,πis1a,nππ2)2a-psasthho.wSno (11) 2 ππ (π₯π¦)<0. πΊ.ππ =πππ (π3π1)β§πππ (π1π2)=0.5β§0.4=0.4.Consider π 2 2 2 π Thensupportofππ,π=1,2,...,π,consequently,is πΏ.ππ =σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨πππ (π3π1)β¨πππ (π1π2)σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨=|β0.4β¨β0.4| 2 2 2 (15) supp(ππ)={π₯π¦βπΈπ :πππ (π₯π¦)>0, πππ (π₯π¦)<0}. (12) =|β0.4|=0.4. π π Definition20. ππ-pathinaBFGSπΊΜπ = (π,π1,π2,...,ππ) Definition27. LetπΊΜπ = (π,π1,π2,...,ππ)beaBFGSwith of a graph structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) is a sequence underlyingvertexsetπ.Then 2πin1,,3ππ,2.,,.s..u.,.cπ,hπ.πthoatfdππiβst1iπnπctisvaerbtiicpeosla(rexfcuezpztytπheπ-cehdogeicfeoπrπal=l ππ1=) (i)bπyπ-πgπaβin,+(oπ₯fπ¦c)on=neβctπeβ₯d1n{πesππs,+b(π₯eπ¦tw)}e,esnucπ₯hatnhdatπ¦πiππs,+d(eπ₯fiπ¦n)e=d π π π (ππβ1,+ β π1,+)(π₯π¦) for π β₯ 2 and π2,+(π₯π¦) = (π1,+ β Du{1ne,dfi2en,r3ilt,yi.oi.nn.g,2πv1}e.riftAefxorBseaFtlGlππ₯Sπ¦iπΊsβΜsπasuidp=pto(πb(ππe)π,ππ-s1t,rπon2g,.f.o.r,πsoπm) ewπithβ ππππ1ππ,+ππ,π)(βπ₯ππ¦.) π=π βπ§{ππ1,+π (π₯π§) β§ ππ1,+π (π§π¦π)}π, where ππ1,π+π π = ππ (π₯π¦)=ππ (π₯)β§ππ (π¦), (ii)ππ-loss of connectedness between π₯ and π¦ is defined ππ π π byπβ,β(π₯π¦) = β {ππ,β(π₯π¦)},suchthatππ,β(π₯π¦) = (13) ππ πβ₯1 ππ ππ ππ (π₯π¦)=ππ(π₯)β¨ππ(π¦). (ππβ1,β β π1,β)(π₯π¦) for π β₯ 2 and π2,β(π₯π¦) = (π1,β β π π π π π π π π π π π π AppliedComputationalIntelligenceandSoftComputing 5 a1(0.3,β0.6) N(0.3,β0.6) a2(0.3,β0.7) 2 a4(0.4,β0.4) NN1(0.(30,.β2,0β.40).4) a3(0.2,β0.6) N2(0.2, β0.6) 1 4) 0.3,β0.4) N(0.1,β0.6)1 (0.2,β0.6)N1 N(0.2,β0.2 ( a (0.3,β0N.25) N2(0.1a,8β(00..51),βa06.8(0).6,β0.6) N1N(01.(10.,2β,0β.40.)4) a7(0.2,β0.4) 5 N(0.3,β0.5) 2 Figure3:BFGSπΊΜπ=(π,π1,π2). a (0.5,β0.4) β¨[π1,+(π π )β§π1,+(π π )] 1 π 2 5 π 5 3 1 1 N 2(0.5,β0.4) N2(0.4,β0.4) ππ2,+(π2π4)==[(0π.10,+β§ππ0.5β]πβ¨π1,[+0).4(πβ§2π04.0)]=0, 1 1 1 =[π2,+(π π )β§π1,+(π π )] a (0.5,β0.7) N(0.4,β0.7) a (0.4,β0.7) π1 2 3 π1 3 4 3 1 2 Figure4:πΊΜπ =(π,π1,π2). β¨[ππ1,+1 (π2π5)β§ππ1,+1 (π5π4)] =[0.3β§0.5]β¨[0.4β§0.3]=0.3, a4(0.6,β0.9) N1(0.5,β0.7) a3(0.5,β0.7) π2,+(π π )=(π1,+π βπ1,+)(π π ) a5(0.4,β0.5) N(10.3,β0.3) N(0.1,β0.4)2 N(0.2,β0.4)2 N1(0.3,β0.5)a2(0.4,β0.7) π1 2 5 =[β¨ππ1[,π+1π1(,ππ+121(ππ32)ππβ§4)1πβ§π1,π+1π21(,π+153(ππ54)π]5)] N2(0.1,β0.4) N1(0.4,β0.4) N(20.2,β0.6) ππ2,+1 (π3π4)==[(0π.13,+β§ππ01.0β]πβ¨π1,[+10).0(πβ§3π04.3)]=0, a6(0.3,β0.4) N1(0.3,β0.2) a1(0.3,β0.6) =[π1,+(π π )β§π1,+(π π )] Figure5:πΊΜπ=(π,π1,π2). π1 3 2 π1 2 4 β¨[π1,+(π π )β§π1,+(π π )] π 3 5 π 5 4 1 1 π1,β)(π₯π¦) = β {π1,β(π₯π§) β§ π1,β(π§π¦)}, where π1,β = =[0.3β§0.0]β¨[0.0β§0.3]=0, π π§ π π π π π π π |ππ|, βπ. π2,+(π π )=(π1,+π βπ1,+)(π π ) ππ π1 3 5 π1 π1 3 5 Example28. LetπΊΜπ = (π,π1,π2)beBFGSofgraphstruc- =[ππ1,+(π3π2)β§ππ1,+(π2π5)] tureπΊ = (π,πΈ1,πΈ2)suchthatπ = {π1,π2,π3,π4,π5,π6},πΈ1 = 1 1 {π1π6,π2π3,π2π5,π3π4,π4π5},andπΈ2 ={π1π3,π1π2,π4π6,π5π6}, β¨[ππ1,+(π3π4)β§ππ1,+(π4π5)] 1 1 asisshowninFigure5. Sinceππ1,+(π2π3) = 0.3,ππ1,+(π2π4) = 0.0,ππ1,+(π2π5) = 0.4, =[0.3β§0.4]β¨[0.5β§0.3]=0.3, 1 1 1 ππ1,+(π3π4) = 0.5, ππ1,+(π5π3) = 0.0, ππ1,+(π4π5) = 0.3, and π2,+(π π )=(π1,+π βπ1,+)(π π ) ππ1,+1(π1π6)=0.3,there1fore 1 π1 4 5 π1 π1 4 5 1 =[π1,+(π π )β§π1,+(π π )] π 4 2 π 2 5 1 1 π2,+(π π )=(π1,+π βπ1,+)(π π ) π1 2 3 π1 π1 2 3 β¨[ππ1,+(π4π3)β§ππ1,+(π3π5)] 1 1 =[ππ1,+(π2π4)β§ππ1,+(π4π3)] =[0.0β§0.4]β¨[0.5β§0.0]=0, 1 1 6 AppliedComputationalIntelligenceandSoftComputing π2,+(π π )=(π1,+π βπ1,+)(π π )=0, π4,+(π π )=(π1,+π βπ1,+)(π π )=0, π 1 6 π π 1 6 π 3 4 π π 3 4 1 1 1 1 1 1 ππ3,+1 (π2π3)=(π2,+ππ1 βππ1,+1)(π2π3) ππ4,+1 (π3π5)=(π1,+ππ1 βππ1,+1)(π3π5)=0.3, =[π2,+(π π )β§π1,+(π π )] π 2 4 π 4 3 π4,+(π π )=(π1,+π βπ1,+)(π π )=0, 1 1 π 4 5 π π 4 5 1 1 1 β¨[π2,+(π π )β§π1,+(π π )] π1 2 5 π1 5 3 π4,+(π π )=(π1,+π βπ1,+)(π π )=0. π 1 6 π π 1 6 =[0.3β§0.5]β¨[0.0β§0.0]=0.3, 1 1 1 (17) π3,+(π π )=(π2,+π βπ1,+)(π π ) Thisimpliesthat π 2 4 π π 2 4 1 1 1 πβ,+(π π )=β¨{0.3,0.0,0.3,0.0}=0.3, =[π2,+(π π )β§π1,+(π π )] π1 2 3 π 2 3 π 3 4 1 1 πβ,+(π π )=β¨{0.0,0.3,0.0,0.3}=0.3, β¨[π2,+(π π )β§π1,+(π π )] π 2 4 π 2 5 π 5 4 1 1 1 =[0.0β§0.5]β¨[0.0β§0.3]=0.0, πβ,+(π π )=β¨{0.4,0.0,0.3,0.0}=0.4, π 2 5 1 ππ3,+1 (π2π5)=(π2,+ππ1 βππ1,+1)(π2π5) ππβ1,+(π3π4)=β¨{0.5,0.0,0.3,0.0}=0.5, (18) =[ππ2,+(π2π3)β§ππ1,+(π3π5)] πβ,+(π π )=β¨{0.0,0.3,0.0,0.3}=0.3, 1 1 π 3 5 1 β¨[π2,+(π π )β§π1,+(π π )] π 2 4 π 4 5 πβ,+(π π )=β¨{0.3,0.0,0.3,0.0}=0.3, 1 1 π 4 5 1 =[0.0β§0.0]β¨[0.3β§0.3]=0.3, πβ,+(π π )=β¨{0.3,0.0,0.0,0.0}=0.3. π 1 6 π3,+(π π )=(π2,+π βπ1,+)(π π ) 1 π1 3 4 π1 π1 3 4 Since =[ππ2,+1 (π3π2)β§ππ1,+1 (π2π4)] ππ1,β1 (π2π3)=0.5, β¨[π2,+(π π )β§π1,+(π π )] π1,β(π π )=0.0, π 3 5 π 5 4 π 2 4 1 1 1 =[0.0β§0.0]β¨[0.3β§0.3]=0.3, π1,β(π π )=0.4, π 2 5 1 π3,+(π π )=(π2,+π βπ1,+)(π π ) π1 3 5 π1 π1 3 5 π1,β(π π )=0.7, (19) π 3 4 1 =[π2,+(π π )β§π1,+(π π )] π 3 2 π 2 5 1 1 π1,β(π π )=0.0, π 5 3 β¨[π2,+(π π )β§π1,+(π π )] 1 π 3 4 π 4 5 1 1 π1,β(π π )=0.3, =[0.0β§0.4]β¨[0.0β§0.3]=0.0, π1 4 5 π1,β(π π )=0.2, π3,+(π π )=(π2,+π βπ1,+)(π π ) π 1 6 π 4 5 π π 4 5 1 1 1 1 wehave =[π2,+(π π )β§π1,+(π π )] π 4 2 π 2 5 π2,β(π π )=(π1,βπ βπ1,β)(π π ) 1 1 π 2 3 π π 2 3 1 1 1 β¨[π2,+(π π )β§π1,+(π π )] π 4 3 π 3 5 =[π1,β(π π )β§π1,β(π π )] 1 1 π 2 4 π 4 3 1 1 =[0.3β§0.4]β¨[0.0β§0.0]=0.3, β¨[π1,β(π π )β§π1,β(π π )] π 2 5 π 5 3 π3,+(π π )=(π2,+π βπ1,+)(π π )=0. 1 1 π1 1 6 π1 π1 1 6 =[0.0β§0.7]β¨[0.4β§0.0]=0.0, (16) π2,β(π π )=(π1,βπ βπ1,β)(π π ) π 2 4 π π 2 4 Similarly, 1 1 1 ππ4,+1 (π2π3)=(π1,+ππ1 βππ1,+1)(π2π3)=0, =[ππ2,β1 (π2π3)β§ππ1,β1 (π3π4)] π4,+(π π )=(π1,+π βπ1,+)(π π )=0.3, β¨[π1,β(π π )β§π1,β(π π )] π 2 4 π π 2 4 π 2 5 π 5 4 1 1 1 1 1 π4,+(π π )=(π1,+π βπ1,+)(π π )=0, =[0.5β§0.7]β¨[0.4β§0.3]=0.5, π 2 5 π π 2 5 1 1 1 AppliedComputationalIntelligenceandSoftComputing 7 π2,β(π π )=(π1,βπ βπ1,β)(π π ) π3,β(π π )=(π2,βπ βπ1,β)(π π ) π 2 5 π π 2 5 π 3 4 π π 3 4 1 1 1 1 1 1 =[ππ1,β1 (π2π3)β§ππ1,β1 (π3π5)] =[ππ2,β1 (π3π2)β§ππ1,β1 (π2π4)] β¨[π2,β(π π )β§π1,β(π π )] β¨[π1,β(π π )β§π1,β(π π )] π 3 5 π 5 4 π 2 4 π 4 5 1 1 1 1 =[0.0β§0.0]β¨[0.4β§0.3]=0.3, =[0.5β§0.0]β¨[0.0β§0.3]=0.0, π3,β(π π )=(π2,βπ βπ1,β)(π π ) π2,β(π π )=(π1,βπ βπ1,β)(π π ) π1 3 5 π1 π1 3 5 π 3 4 π π 3 4 1 1 1 =[π2,β(π π )β§π1,β(π π )] π 3 2 π 2 5 =[π1,β(π π )β§π1,β(π π )] 1 1 π 3 2 π 2 4 1 1 β¨[π2,β(π π )β§π1,β(π π )] π 3 4 π 4 5 β¨[π1,β(π π )β§π1,β(π π )] 1 1 π 3 5 π 5 4 1 1 =[0.0β§0.4]β¨[0.0β§0.3]=0.0, =[0.5β§0.0]β¨[0.0β§0.3]=0.0, π3,β(π π )=(π2,βπ βπ1,β)(π π ) π 4 5 π π 4 5 1 1 1 π2,β(π π )=(π1,βπ βπ1,β)(π π ) π 3 5 π π 3 5 =[π2,β(π π )β§π1,β(π π )] 1 1 1 π 4 2 π 2 5 1 1 =[π1,β(π π )β§π1,β(π π )] β¨[π2,β(π π )β§π1,β(π π )] π1 3 2 π1 2 5 π1 4 3 π1 3 5 β¨[π1,β(π π )β§π1,β(π π )] =[0.5β§0.4]β¨[0.0β§0.0]=0.4, π 3 4 π 4 5 1 1 π3,β(π π )=(π2,βπ βπ1,β)(π π )=0. =[0.5β§0.4]β¨[0.7β§0.3]=0.4, π 1 6 π π 1 6 1 1 1 (20) π2,β(π π )=(π1,βπ βπ1,β)(π π ) π1 4 5 π1 π1 4 5 Similarly, =[π1,β(π π )β§π1,β(π π )] π4,β(π π )=(π1,βπ βπ1,β)(π π )=0, π1 4 2 π1 2 5 π1 2 3 π1 π1 2 3 β¨[π1,β(π π )β§π1,β(π π )] π4,β(π π )=(π1,βπ βπ1,β)(π π )=0.5, π1 4 3 π1 3 5 π1 2 4 π1 π1 2 4 =[0.0β§0.4]β¨[0.7β§0.0]=0.0, π4,β(π π )=(π1,βπ βπ1,β)(π π )=0, π 2 5 π π 2 5 1 1 1 ππ2,β1 (π1π6)=(π1,βππ1 βππ1,β1)(π1π6)=0, ππ4,β(π3π4)=(π1,βππ βππ1,β)(π3π4)=0, (21) 1 1 1 π3,β(π π )=(π2,βπ βπ1,β)(π π ) π4,β(π π )=(π1,βπ βπ1,β)(π π )=0.4, π1 2 3 π1 π1 2 3 π1 3 5 π1 π1 3 5 =[π2,β(π π )β§π1,β(π π )] π4,β(π π )=(π1,βπ βπ1,β)(π π )=0, π1 2 4 π1 4 3 π1 4 5 π1 π1 4 5 β¨[π2,β(π π )β§π1,β(π π )] π4,β(π π )=(π1,βπ βπ1,β)(π π )=0. π1 2 5 π1 5 3 π1 1 6 π1 π1 1 6 =[0.5β§0.7]β¨[0.0β§0.0]=0.5, Thisimpliesthat π3,β(π π )=(π2,βπ βπ1,β)(π π ) ππβ,β(π2π3)=β¨{0.5,0.0,0.5,0.0}=0.5, π 2 4 π π 2 4 1 1 1 1 πβ,β(π π )=β¨{0.0,0.5,0.0,0.5}=0.5, =[π2,β(π π )β§π1,β(π π )] π 2 4 π 2 3 π 3 4 1 1 1 πβ,β(π π )=β¨{0.4,0.0,0.3,0.0}=0.4, β¨[ππ2,β(π2π5)β§ππ1,β(π5π4)] π1 2 5 1 1 =[0.0β§0.7]β¨[0.0β§0.3]=0.0, ππβ,β(π3π4)=β¨{0.7,0.0,0.3,0.0}=0.7, (22) 1 πβ,β(π π )=β¨{0.0,0.4,0.0,0.4}=0.4, π3,β(π π )=(π2,βπ βπ1,β)(π π ) π1 3 5 π 2 5 π π 2 5 1 1 1 πβ,β(π π )=β¨{0.3,0.0,0.4,0.0}=0.4, =[π2,β(π π )β§π1,β(π π )] π1 4 5 π 2 3 π 3 5 β¨[π12,β(π π )β§π11,β(π π )] ππβ1,β(π1π6)=β¨{0.3,0.0,0.0,0.0}=0.2. π 2 4 π 4 5 1 1 Foralltheremainingpairsofvertices,π1-lossandπ1-gain =[0.0β§0.0]β¨[0.5β§0.3]=0.3, ofconnectednessarezero. 8 AppliedComputationalIntelligenceandSoftComputing (Dgsrueafippnhpi(tπsiotrn)u,cs2tuu9pr.peA(πΊπβB1)F,Gs=uSp(pπΊπ(Μππ,πΈ21)=,,πΈ..2.,(,.πs.u.p,,ππΈp(π1π),ππis)2),ai.sn.a.π,nπππΈ-πcπ)-yccyolecfleia.f a4(0.6β,0.β3)0.9) N1σ³°(0.5,β0.7) a3(0.5,β0.7) Definition30. ABFGSπΊΜπ = (π,π1,π2,...,ππ)ofagraph σ³°N(10.3, β0.4) β0.4) fsotrruscotumreeππΊiβf = (π,πΈ1,πΈ2,...,πΈπ)isabipolarfuzzyππ-cycle a5(0.4,β0.5)Nσ³° σ³°N(0.1,2 σ³°N(0.2,2 2(0. (i)πΊΜπisanππ-cycle; 1,β0. (ii)tπhππer(eπ’Vi)s=nomiunn{iπqππue(π₯π¦π)π-:edπ₯gπ¦e βπ’VπΈiπn=πΊsΜπupspu(cπhπ)t}hoart a6(0.3,β4)0.4) N1σ³°(0.3,β0.2) a1(0.3,β0.6) ππππ(π’V)=max{πππ(ππ₯π¦):π₯π¦βπΈπ =supp(ππ)}. Figure6:Bipolarfuzzysubgraphstructure(π\{π2},π1σΈ ,π2σΈ ). π π Example 31. Consider BFGS πΊΜπ = (π,π1,π2) as shown in Figure3. Then πΊΜπ is an π1-cycle as well as bipolar fuzzy Thenπ2isabipolarfuzzyπ1-πcutvertexsince π1-cycle,since(supp(π),supp(π1),supp(π2))isanπΈ1-cycle πβ,β(π π )=0.7=πβ,β(π π ), and there are two π1-edges with minimum positive degree π1 3 4 π1σΈ 3 4 oanfdallmπo1r-eetdhgaens.oneπ1-edgewithmaximumnegativedegree ππβ1,β(π3π5)=0.4>0.3=ππβ1,β(π3π5), (25) gDLreeatfip(nhπitsiσΈ to,rnπuc31σΈ t2,uπ.reL2σΈ ,πΊe.tβ.πΊ.=,Μππ(=ππσΈ ),(bπΈπe1,,aπΈπb21i,p,.oπ.l.a2,r,πΈ.fπ.u).z,ayπnsdπu)bπ₯bgareavapehBrtFsetxGruoScftoπΊufrΜπae. ππππββ11,,ββ((ππ41ππ56))==00..42>=0π.πβ31,β=(πππβ1π1σΈ ,β6)(.π4π5), ofπΊΜπinducedbyπ\{π₯}suchthat Definition 34. Let πΊΜπ = (π,π1,π2,...,ππ) be a BFGS of ππ (π₯)=0=ππ (π₯), a graph structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) and let π₯π¦ be an πσΈ πσΈ ππ-edge.Let(π,π1σΈ ,π2σΈ ,...,ππσΈ )beabipolarfuzzyspanning πππσΈ (π₯V)=0=πππσΈ (π₯V) subgraphstructureofπΊΜπ,obtainedbytaking π π βedgesπ₯VβπΊΜπ, ππππσΈ (π₯π¦)=0=ππππσΈ (π₯π¦), ππ (V)=ππ (V), ππ (π’V)=ππ (π’V), πσΈ π ππσΈ ππ (26) ππ (V)=ππ(V), (23) ππ (π’V)=ππ (π’V) πσΈ π πσΈ π π π βV=ΜΈπ₯, βedgesπ’V=ΜΈπ₯π¦. ππππσΈ (π’V)=ππππ(π’V), Thenπ₯π¦isabipolarfuzzyππ-bridgeif ππ (π’V)=ππ (π’V) πβ,+(π’V)>πβ,+(π’V), ππσΈ ππ ππ ππσΈ βπ, such that π’=ΜΈπ₯, V=ΜΈπ₯. πβ,β(π’V)>πβ,β(π’V) (27) ππ ππσΈ Thenπ₯isabipolarfuzzyππ-cutvertexforsomeπ,if for some π’,Vβπ. ππππββππ,,+β((π’π’VV))>>ππππββππσΈ σΈ ,,+β((π’π’VV)), (24) csEeodcngodenitdπ₯ioπ¦cnonihsdoialtdniosnπanhπ-doPladnbs.iπpoπl-aNrbfiupzozlyarbfruizdzgyebirfidognelyiftohnelyfitrhset for some π’,Vβπ\{π₯}. Example35. ConsidertheBFGSπΊΜπ =(π,π1,π2)asshown in Figure6 and let πΊΜσΈ = (π,πσΈ ,πσΈ ) be bipolar fuzzy cAtEhoxnenaddsm,eitcpπ₯ioloenins3d3hac.nooClndπodsnπi-atsPinioddnbeirahpBooπllFadπS-rsGN.fuπΊbzΜiπzpy=olca(urπtfuv,πezrz1tye,xπcu2itf)vaoesnrcltyoexntshiifedoefirnrelsdyt sπ0epd.πβ3ag1,ne+=n((πiππn2πβ2πgπσΈ 5,5βs))u(=.πb2Thg0πr.5a4e)pn,>haπn0s2dt.π3ru5aπ=lcsitsouπrπβaaeb1σΈ ,b+oipi(fpπoπΊo2laπΜlπar5ro)f1ubafztunazzdiy2znπyπeπβdπ11,-bβ1Ny(-πbdb2rreπiidl5de)gtgei=en,,g0ssii.πnn4cc1>ee- iπn2,Ethxaemrepsluel2ti8nganbdipsohlaorwfnuziznyFsiugbugrrea5p;hasftterrucdteulreetiwngillvbereteaxs π0.πβ31,β=(ππ3βπ15,β)(π=π0.4).>0.3=ππβ1σΈ ,β(π3π5)andππβ1,β(π4π5)=0.4> showninFigure6. πσΈ 4 5 1 AppliedComputationalIntelligenceandSoftComputing 9 a (0.3,β0.6) 1 2) 0. β 3, 0. N (20.2,β0.4) N 2(0.1,β 0.4N) (N(02.3,βa06(.30).3N,2β(00..14,)β0.4)N2(0.2,β0.6) 1 N 1(0.5, β 0.7) a4(0.6,β0.9) a5(0.4,β0.5) N1(0.2,β0.1) a3(0.5,β0.7) N1(0.3,β0.5) a2(0.4,β0.7) Figure7:πΊΜπ=(π,π1,π2). a (0.3,β0.3) b(0.3,β0.3) 1 1 N 1(0.2,β 0.2) N1(0.3,β0.2) Nσ³°2(0.2,β 0.2) N2σ³°(0.3,β0.2) a2(0.5,β0.5) N2(0.3,β0.4) a3(0.3,β0.8) b2(0.5,β0.5) N1σ³°(0.3,β0.4) b3(0.3,β0.8) (BFGSGΜ ) (BFGSGΜ ) b1 b2 Figure8:Isomorphicbipolarfuzzygraphstructures. Definition 36. A BFGS πΊΜπ = (π,π1,π2,...,ππ) of a (π2,πΈ21,πΈ22,...,πΈ2π)ifthereexistsabijectionπ: π1 β π2 graph structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) is an ππ-tree if andapermutationπontheset{1,2,...,π}suchthat (supp(π΄),supp(π1),supp(π2),...,supp(ππ))isanπΈπ-tree.In otherwords,πΊΜπisanππ-treeifasubgraphofπΊΜπ,inducedby πππ (π’1)=πππ (π(π’1)), supp(ππ),formsatree. 1 2 ππ (π’ )=ππ (π(π’ )) (29) π 1 π 1 Definition37. ABFGSπΊΜπ = (π,π1,π2,...,ππ)ofagraph 1 2 structure πΊβ = (π,πΈ1,πΈ2,...,πΈπ) is a bipolar fuzzy ππ-tree βπ’1 βπ1 i(fπ΄πΊ,ΜπΆπ1h,aπΆs2a,.b..ip,πΆolπa)rsfuuczhzythspaatnπ»nΜiπnigssaubπΆgπr-atrpehesatnrudctπuππre(π₯π»π¦Μπ) =< andforπ(π)=π π ππΆβπ,+In(π₯mπ¦)oarendco|nπcππeπ(rπ₯nπ¦ed)|v<ieπwπΆβ,ππΊ,βΜπ(π₯iπ¦s)aβbiπpoπ-leadrgfeusznzyotπinπ-Pπ»Μtπr.eeif πππ1π(π’1π’2)=πππ2π(π(π’1)π(π’2)), onlythefirstconditionholdsandabipolarfuzzyππ-Ntreeif πππ (π’1π’2)=πππ (π(π’1)π(π’2)) (30) 1π 2π onlythesecondconditionholds. βπ’ π’ βπΈ , π=1,2,...,π. 1 2 1π Example38. ConsiderBFGSπΊΜπ = (π,π1,π2)asshownin Figure7,whichisanπ2-tree.Itisnotanπ1-treebutabipolar Example40. LetπΊΜπ1 = (π,π1,π2)andπΊΜπ2 = (πσΈ ,π1σΈ ,π2σΈ ) sfduterzluezctyitnuπgr1eπ-t(r1πe-ee,dsπgine1σΈ c,πeπ2πi2σΈ t5)hfaarossmaanbπΊiΜpππoa1ln-atdrrefeu,zzwyhsipchaninsinogbtsauinbgedrapbhy (bπeσΈ t,wHπΈoe1σΈ r,BeπΈFπΊ2σΈ G)Μπ,S1rseissopfisegocrtmaivpoehrlyps,htariusccs(thnuoorwetsnidπΊien1βnFt=iicg(auπl)r,etπΈo81.,πΊπΈΜπ22)uannddeπΊr2βth=e πππ1(π2π5)=0.2<0.3=ππβ1σΈ ,+(π2π5), πm(aπp3p)i=ngπ3π,:anπdβapeπrmσΈ ,duetafitnioendπbygπiv(eπn1)by=ππ(11,)π=(π22),π=(π22),=an1d, σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨πππ1(π2π5)σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨=0.1<0.3=ππβ1σΈ ,β(π2π5). (28) suchthπaπt (π)=ππ (π(π)), π π πσΈ π Definition 39. A BFGS πΊΜπ 1 = (π1,π11,π12,...,π1π) of ππ(π)=ππ (π(π)) graph structure πΊ1β = (π1,πΈ11,πΈ12,...,πΈ1π) is isomor- π π πσΈ π phic to a BFGS πΊΜπ 2 = (π2,π21,π22,...,π2π) of πΊ2β = βππ βπ, 10 AppliedComputationalIntelligenceandSoftComputing b(0.2,β0.5) 6 β0.0) N1(0.2, a5(0.4,β0.4) N2σ³°(0.1,β0.2) a4(0.1,β0.2) N(10.2, β0.1) N2σ³°(0.4,β0.4) Nσ³°2(0.1,β 0.2) a (0.6,β0.6) b1(0.4,β0.4) N2(0.1,β0.2) b5(0.1,β0.2) 4) 6 0. β N1(0.2,β0.0) 2, 0. b(0.9,β0.0) b(0.2,β0.1) ( 2 4) 4 σ³°N1 a1(0.2,β0.5) N2(0.4,β0. N(0.2,β0.1 (0.1,β0.2) Nσ³°1(0.2,0.0) N1σ³°(0.2,0.0)N1σ³°(0.2,β0.1) 4) N2 a (0.9,β0.0) a (0.2,β0.1) 2 3 b(0.6,β0.6) 3 (GΜ ) (GΜ ) b1 b2 Figure9:Identicalbipolarfuzzygraphstructures. ππ (ππ )=ππ (π(π)π(π )), ππ (ππ )=ππ (π(π)π(π )), π π π π π π π π π πσΈ π π π π(π) π π ππ (ππ )=ππ (π(π)π(π )) ππ (ππ )=ππ (π(π)π(π )) π π π π π π π π π πσΈ π π π π(π) π π βππ βπΈ , π=1,2. βππ βπΈ , π=1,2. π π π π π π (31) (33) DπΊt(hπ1βeefir2en,=πietxi2oi1(nsπ,tπ,4aπΈ21b.21,i1jA.,e.πΈc.Bt1,i2Foπ,Gn.2.πSπ.),πΊ:oπΈΜπ πf11πG)=βSis(πΊππi2βd,1es,=nuπtci1(ch1πa,tl,πhπΈtao12t21,,a.πΈ.B2.2,F,πG..1S.π,)πΊπΈoΜπ 2f2π)G=iSf DtoahneGefi{SπsneiπΊ1tti,βo{ππΈn=214,,.(3πΈ.π.2.,,,LπΈ.πe.1t.π,,}πΊπΈπΈ;Μ2πtπ,h}.a=.at.ni,(sdπΈπ,ππt)h,(.ππeLπ1ce),otπ=rπr2πe,bs.πep.io.af,nnaπdyniπdnp)geobrnpmeleyauritmfBaπtuFi(otGπΈantSπi)ooo=nnf ππ (π’)=ππ (π(π’)), πΈπ βπ. π1 π2 Ifπ₯π¦βππforsomeπand ππ (π’)=ππ (π(π’)) π π 1 2 ππ (π₯π¦)=ππ (π₯)β§ππ (π¦)ββππ (π₯π¦), βπ’βπ, πππ π π π=πΜΈ πππ (32) ππ (π’ π’ )=ππ (π(π’ )π(π’ )), ππ (π₯π¦)=ππ(π₯)β¨ππ(π¦)ββππ (π₯π¦), (34) π1π 1 2 π2π 1 2 πππ π π π=πΜΈ πππ ππ (π’ π’ )=ππ (π(π’ )π(π’ )) π1π 1 2 π2π 1 2 π=1,2,...,π, βπ’ π’ βπΈ , π=1,2,...,π. 1 2 1π then π₯π¦ β π΅π, while π is chosen such that ππ (π₯π¦) β₯ EbexatwmoplBeF4G2.SsLoetfgπΊrΜπa1p=hs(tπru,cπtu1r,eπs2πΊ)1βan=d(ππΊΜ,π2πΈ1=,πΈ(π2)aσΈ ,nπd1σΈ πΊ,π2β2σΈ =) πππππ(π₯π¦)andππππππ(π₯π¦)β€πππππ(π₯π¦) βπ. πππ (πσΈ ,πΈ1σΈ ,πΈ2σΈ ),respectively,asshowninFigure9. AndBFGS(π,ππ,ππ,...,ππ),denotedbyπΊΜππ,iscalled π HβereππΊσΈ Μ,π1diesfinideedntbicyalπw(πi1th) πΊ=Μπ2πu6,nπd(eπr2)the=mπa2p,pπi(nπg3)π=: theπ-complementof1BFG2SπΊΜπ. π π π4,π(π4)=π5,π(π5)=π1,andπ(π6)=π3,suchthat Example 44. Let π = {(π1,0.3,β0.7), (π2,0.5,β0.4), ππ (π)=ππ (π(π)), (π3,0.7,β0.3)},π1 = {(π1π3,0.3,β0.3),(π2π3,0.5,β0.3)},and π π πσΈ π π2 ={(π1π2,0.3,β0.4)}bebipolarfuzzysubsetsofπ,πΈ1,and ππ(π)=ππ (π(π)) πΈ2,respectively,sothatπΊΜπ =(π,π1,π2)isaBFGSofgraph π π πσΈ π structureπΊβ =(π,πΈ1,πΈ2).Letπbeapermutationontheset βππ βπ, {π1,π2}suchthatπ(π1)=π2andπ(π2)=π1.