loading

Logout succeed

Logout succeed. See you again!

ebook img

Revisiting extensions of regularly varying functions PDF

file size0.15 MB
languageEnglish

Preview Revisiting extensions of regularly varying functions

Revisiting extensions of regularly varying functions ∗ MeitnerCadena 5 1 Abstract 0 2 RelationshipsamongtheclassesM,M∞,andM−∞andtheclassofO-regularlyvarying functionsareshown. TheseresultsarebasedontwocharacterizationsofM, M∞, and pr M−∞providedbyCadenaandKratzin[7]andanewonegiveninthisnote. A Keywords: regularlyvaryingfunction; slowlyvaryingfunction; O-RV;largedeviations; 7 extremevaluetheory 2 AMSclassification:26A12;60F10 ] A C 1 Introduction . h t ApositiveandmeasurablefunctionU definedonR+isaregularlyvarying(RV)functionif a m U(tx) [ lim <∞ (t>0). (1) x→∞ U(x) 2 v Ifthislimitequals1,U isaslowlyvarying(SW)function. ClassesRV andSV ofregularlyand 8 slowlyvaryingfunctionswereintroducedbyKaramata[10]in1930.Sincethentheoryofthese 8 functionshasbeendevelopedinmanydirections. Systematictreatmentofthistheorycanbe 4 foundine.g.[6]and[14]. 6 0 ExtensionsofRVfunctionshavebeenobtainedbyletting(1)tovary.Anearlyextensionofthis . typewasgivenbyAvakumovic´in1936[4].HeintroducedtheclassO-RV ofO-regularlyvarying 2 0 (O-RV)functionsU whichsatisfythefollowingconditioninsteadof(1): 5 v:1 0<U∗(t):=xl→im∞UU((txx))≤xl→im∞UU((txx))=:U∗(t)<∞ (t≥1). (2) i X RecentlyCadenaandKratz[7]gaveanextensionofRVfunctionsbyalsoletting(1)tovary,but r theydesigneditinadifferentwaytothepreviousone. TheyintroducedtheclassM which a consistsinfunctionsU satisfyingthefollowingconditioninsteadof(1): U(x) U(x) ∃ρ∈R,∀ǫ>0, lim =0 and lim =∞. (3) x→∞ xρ+ǫ x→∞ xρ−ǫ We have clearly RV (O-RV and, for instance using Theorem 1 (see Corollary 1), RV(M. TherearisesthenaturalquestionofhowO-RV andM arerelatedbetweenthem. Weunder- takethisstudyhelpingusofcharacterizationsoftheseclasses: recallingwell-knowncharac- terizationsofO-RV andgivingproofsofthreecharacterizationsofM,twoofthemprovidedin [7]andanewonegiveninthisnote. ∗UPMCParis6&CREAR,ESSECBusinessSchool;E-mail:[email protected],[email protected],or [email protected] 1 CadenaandKratzalsointroducedthefollowingnaturalextensionsofM. U(x) M∞ := U:R+→R+:U ismeasurableandsatisfies∀ρ∈R, lim =0 (4) x→∞ xρ ½ ¾ U(x) M−∞ := U:R+→R+:U ismeasurableandsatisfies∀ρ∈R, lim =∞ . (5) x→∞ xρ ½ ¾ The new characterization givenfor M isextended toM∞ and M−∞. Relationships among M∞andM−∞andO-RV arealsoinvestigatedinthisnote. This noteisorganizedasfollows. Themainresultsarepresented inthenextsection, intro- ducingpreviouslynotationsanddefinitions. First,thenewcharacterizationsofM,M∞,and M−∞basedonlimitsaregiven. Next,analysesofuniformconvergenceinthesecharacteriza- tionsarepresentedand,finally,relationshipsamongO-RV andM,M∞andM−∞areshown. AllproofsarecollectedinSection3.Conclusionispresentedinthelastsection. 2 MainResults ForapositivefunctionU withsupportR+ itslower andupperordersaredefinedby(seee.g. [6]) log(U(x)) log(U(x)) µ(U) := lim , ν(U) := lim . x→∞ log(x) x→∞ log(x) Throughoutthisnotelog(x)representsthenaturallogarithmofx. WenoticethattheclassesM,M∞,andM−∞definedin(3),(4),and(5)areabitweakerthan thecorrespondingclassesgivenin[7],andthateachofthemisdisjointfromeachother.More- over,usingstraightforwardcomputations,onecanprovethatρdefinedin(3)isunique,hence itwillbedenoted byρ , andonecanshowthatǫ>0in(3)canbetakensufficiently small. U Additionally,onecanprovethatM isstrictlylargerthanRV,forinstanceusingTheorem1(see Corollary1),andthatM∞isrelatedtothedomainofattractionofGumbel(see[7]). ThenewcharacterizationsofM,M∞,andM−∞follow. Theorem1. LetU:R+→R+beameasurablefunction.Then (i) U∈M withρ =−τiff U U(tx) ∀r <τ,∃x >1,∀x≥x , lim tr =0 a a t→∞ U(x)  (6)  ∀r >τ,∃x >1,∀x≥x , lim trU(tx)=∞. b b t→∞ U(x) (ii) U∈M∞iff  U(tx) ∀r ∈R,∃x >1,∀x≥x , lim tr =0. (7) 0 0 t→∞ U(x) (iii) U∈M−∞iff U(tx) ∀r ∈R,∃x >1,∀x≥x , lim tr =∞. (8) 0 0 t→∞ U(x) Example1. 1. ConsiderameasurableandpositivefunctionUwithsupportR+suchthat,forx≥x with 0 somex >1,U(x)=x log(x). 0 ± 2 Notingthat,fort,x>1, U(tx) log(x) 0 ifr >1 lim tr = lim tr−1 = t→∞ U(x) t→∞ log(tx) ∞ ifr <1, ½ provides,takingτ=−1andapplyingTheorem1,(i),U∈M withρ =1. U 2. LetU beafunctiondefinedbyU(x):=xsin(x),x>0. Writing U(tx) tr =tr+sin(tx)xsin(tx)−sin(x) U(x) gives,forr ∈R, U(tx) U(tx) lim tr =∞ and lim tr =0. t→∞ U(x) t→∞ U(x) Hencethe necessarycondition ofTheorem1, (i), is not satisfiedand consequently gives U6∈M. It follows a consequence of Theorem 1. This result was proved by Cadena and Kratz in [7] combiningaresultprovidedin[8]andanothercharacterizationofM (seeTheoremCKlater). Corollary1. RV ( M. Notethat,fromCorollary1,RV ⊆M O-RV. TherearenotcommonelementsbetwTeenO-RV andM undertheirdefinitionsgivenin(2)and (3)respectively,butobservingthecharacterizationofM giveninTheorem1oneidentifiesthe quotientU(tx) U(x),whichappearsin(2). Thenextexampleexploitsthislinktoshowafirst relationshipbetweenO-RV andM. ± Example2. M 6⊆ O-RV. LetUbeafunctiondefinedbyU(x):=exp (logx)αcos (logx)β ,x>0,where0<α,β<1such thatα+β>1. © ¡ ¢ª Prof. PhilippeSouliergaverecommendationstocorrectanerrorinanearlyversionofthisex- ample. Ontheonehand,notingthat,forx,t>e,usingthechangesofvariabley=log(x)ands=log(t) andobservingthats→∞ast→∞, U(tx) lim tr = limexp rs+(s+y)αcos (s+y)β −yαcos yβ t→∞ U(x) s→∞ n1 y α ¡ ¢ yα ¡ ¢o 0 ifr >0 = limexp s r+ 1+ cos (s+y)1/3 − cos yβ = s→∞ s1−α s s ∞ ifr <0, ½ µ ³ ´ ¡ ¢ ¡ ¢¶¾ ½ provides,takingτ=0andapplyingTheorem1,U∈M withρ =0. U Ontheotherhand,writing,forx>e andt>0,usingthepreviouschangesofvariables,withx suchthat logtx β=π 2+2kπ,foragivent, ¡ ¢ ± U(tx) =exp − logx αcos (logx)β U(x) n ¡ ¢ ¡ ¢o =exp −yαcos ((π 2+2kπ)1/β−s)β =expn (π 2+2¡kπ)±1/β−s αsin ((π 2¢o+2kπ)1/β−s)β−(π 2+2kπ) . n¡ ± ¢ ¡ ± ± ¢o 3 Since (π 2+2kπ)1/β−s β−(π 2+2kπ)→0ask→∞,wehave ¡ ± ¢ ± lim (π 2+2kπ)1/β−s αsin ((π 2+2kπ)1/β−s)β−(π 2+2kπ) k→∞ h¡ ± ((π 2+2kπ)1¢/β−s)¡β−±(π 2+2kπ) ± ¢i = lim , k→∞ ± (π 2+2kπ)1/β−s±−α ¡ ± ¢ whichisanindeterminationoftype0 0.Then,applyingL’Hopital’srulewehave ± ((π 2+2kπ)1/β−s)β−(π 2+2kπ) lim k→∞ ± (π 2+2kπ)1/β−s±−α ¡ ± ((π 2+2kπ¢)1/β−s)β−(π 2+2kπ) = lim(2π)α/β k→∞ ± k−α/β ± β ((π 2+2kπ)1/β−s)β−1(π 2+2kπ)1/β−1−1 = lim − (2π)α/β+1 , k→∞ α ± k−α/β−1± whichisanindeterminationoftype0 0.Then,applyingagainL’Hopital’srulewehave ± ((π 2+2kπ)1/β−s)β−(π 2+2kπ) lim k→∞ ± (π 2+2kπ)1/β−s±−α = lim s¡β(±1−β)(2π)α/β+2¢((π 2+2kπ)1/β−s)β−2(π 2+2kπ)1/β−2 k→∞ α(α+β) ± k−α/β−2 ± β(1−β) = lim s (2π)(α+β−1)/βk(α+β−1)/β k→∞ α(α+β) ∞ ifs>0 = −∞ ifs<0. ½ Then,weget,fort>1, U(tx) U∗(t)= lim =∞, x→∞ U(x) and,fort<1, U(tx) U∗(t)= lim =0, x→∞ U(x) whichcontradict(2),soU6∈O-RV.Inparticular,U6∈SV. Next,theuniformconvergencesinxoflimitsgivenin(6),(7),and(8)areanalyzed.Tothisaim, wewillusethenexttworesults. Proposition1. LetU:R+→R+beameasurablefunction.Then (i) IfU ∈M withρ =−τ,thenthereexistsx >1suchthat,forx ≤c<d <∞,thereexist U 0 0 0<M <M satisfying,forx∈[c;d],M ≤U(x)≤M . c d c d (ii) IfU ∈M∞,thenthereexistsx0>1suchthat,forc≥x0,thereexistMc >0satisfying,for x∈[c;∞),U(x)≤M . c (iii) IfU∈M−∞,thenthereexistsx0>1suchthat,ford≥x0,thereexistMd>0satisfying,for x∈[d;∞),U(x)≥M . d 4 Proposition2(Givenin[2]). LetµbetheLebesguemeasureonR,Aameasurablesetofpositive measure,and xn n∈Naboundedsequenceofrealnumbers.Then,µ(A)≤µ limn→∞(xn+A) . © ª ¡ ¢ Nowtheresultsonuniformconvergencesarepresented.Theirproofsareinspiredby[3]. Theorem2(UniformConvergenceTheorem(UCT)). LetU:R+→R+beameasurablefunc- tion.Then (i) IfU∈M withρ =−τandr<τ,then,foranyx ≤c<d<∞forsomex >1, U a a U(tx) lim tr sup =0. t→∞ x∈[c;d] U(x) (ii) IfU∈M withρ =−τandr>τ,then,foranyx ≤c<d<∞forsomex >1, U b b U(tx) lim tr inf =∞. t→∞ x∈[c;d] U(x) (iii) IfU ∈M∞satisfying,fors>1,U(x)≥Ms forx∈[1;s]andsomeMs >0,then,forr ∈R andanyconstantsx ≤c<d<∞forsomex >1, 0 0 U(tx) lim tr sup =0. t→∞ x∈[c;d] U(x) (iv) IfU ∈M−∞satisfying,fors>1,U(x)≤Ms forx∈[1;s]andsomeMs >0,then,forr ∈R andanyconstantsx ≤c<d<∞forsomex , 0 0 U(tx) lim tr inf =∞. t→∞ x∈[c;d] U(x) Note that UCT cannot be extended to infinite intervals. For instance, from the functionU giveninExample2wehavethatcomputingthesupremumofthequotientU(tx) U(x)inxon [x ;∞),foranyx >1,givesalways∞,andhenceonecannotdeducethatρ =0. 0 0 U ± ThenextresultsonO-RV,M,M∞,andM−∞willbeusedtogivemorerelationshipsbetween theseclasses.OnO-RV weneed: Proposition3(seee.g. [11],[14],[1],[9],and[6]). LetU :R+→R+beameasurablefunction. Thenthefollowingstatementsareequivalent: (i) U∈O-RV. (ii) Thereexistα,β∈Randx >1,c>0suchthat,forallt≥1andx≥x , 0 0 U(tx) c−1tβ≤ ≤ctα. U(x) (iii) Thereexistfunctionsη(x)andφ(x)boundedon[x ;∞),forsomex ≥1,suchthat 0 0 x dy U(x)=exp η(x)+ φ(y) , x≥1. ½ Z1 y ¾ OnM weneedthenexttwocharacterizationsofM givenbyCadenaandKratzin[7]. Forthe sakeofcompletenessofthisnote,wegivethemasTheoremCKandindicatetheirproofs.Part oftheseproofsarecopiedfrom[7]. TheoremCK. LetU :R+→R+ beameasurablefunction. Thenthefollowingstatementsare equivalent: (i) U∈M withρ =τ. U 5 log(U(x)) (ii) lim =τ. x→∞ log(x) (iii) Thereexistb>1andmeasurablefunctionsα,β,andδsatisfying,asx→∞, α(x) log(x)→0, β(x)→τ, δ(x)→1, ± suchthat x ds U(x)=exp α(x)+δ(x) β(s) , x≥x forsomex ≥b. 1 1 ½ Zb s ¾ Remark1. IfF isthetailofadistributionF associatedtoarandomvariable(rv)X,someau- thors(seee.g.[12]and[13])saythatX isheavy-tailedifthelimit log F(x) η:= lim x→∞ lo³g(x) ´ existsandtakesanegativevalue. Wenoticethatthischaracterizationdoesnotcoverrvswithheavytailssatisfyingη=0orwith heavytailsforwhichsuchlimitdoesnotexist. Indeed,ontheoneside,fromTheoremCKone hasthatη=0impliesthatF ∈M withρ =0,beingaparticularcaseofthesefunctionstheSV F functions,whichareconsideredheavy-tailed.Ontheotherside,CadenaandKratzpresentedin log F(x) [7]familiesoftailsF forwhichthelimit lim doesnotexist,forinstancethenexttail x→∞ lo³g(x) ´ definedby(see[7]) Letα>0,β<−1, x >1,anddefinetheseriesx =x(1+α)n,n≥1,whichsatisfies a n a x →∞asn→∞. ItisnothardtoprovethatthetailF associatedtoarv X and n definedby 1 x∈[0;x ) 1 F(x):=( xnα(1+β) x∈[xn;xn+1),∀n≥1 satisfies log F(x) α(1+β) log F(x) lim =− <−α(1+β)= lim . x→∞ lo³g(x) ´ 1+α x→∞ lo³g(x) ´ Notethatif−α(1+β) (1+α)<1,thentheexpectedvalueofX is∞,whichmeans thatX canbeconsideredasaheavy-tailedrv. ± WenoticefromtherepresentationsofUviaO-RV andM giveninProposition3,(iii),andThe- oremCK,(iii),respectively,thatakeydifferencebetweenthoserepresentationsisthepresence ofaboundedfunctionundertheintegralsymbol. Motivatedbythisobservation,webuiltthe nextfunctionbelonging toO-RV butnottoM. Thisaimisreachedbybuildingabounded xφ(s)ds functionφsuchthatthelimit lim 1 s doesnotexist.Notethatifthislimitexists,then, x→∞Rlog(x) applyingTheoremCK,(iii),U∈M. Example3. O-RV 6⊆ M. x ds LetU:R+→R+beameasurablefunctionsatisfying,forx≥1,U(x)=exp φ(s) ,where ½Z1 s ¾ thefunctionφhassupport[1;∞)andisdefinedby 0 ifx∈[1;e)orx∈I withnodd φ(x)= n 1 ifx∈I withneven, ½ n 6 whereI =[een;een+1),n∈N. n Ontheonehand,applyingProposition3,onehasU∈O-RV. Ontheotherhand,writing,forx>1,usingthechangeofvariabley=log(s) log(x), log(U(x)) xφ(s)ds 1 ± = 1 s = φ eylog(x) dy log(x) Rlog(x) Z0 ³ ´ gives,takingx =een,n=2,3,..., n n−1 (−1)ke−k ifnisodd lolgo(gU(x(xnn)))=nkX=−11Zekek/e+n1/enφ³eyen´dy= nkX=−01(−1)k+1e−k ifniseven, andonethengets  kX=1 1 ifnisodd log(U(x )) 1+e−1 lim n = n→∞ log(xn)  e−1 ifniseven, 1+e−1 whichimpliesν(U)−µ(U)≥(1−e−1) (1+e−1)>0,hencethelimit lim log(U(x))doesnotexist x→∞ log(x) andthus,applyingTheoremCK,U6∈±M. NowwegiveanotherrelationshipbetweenO-RV andM. Proposition4. LetU:R+→R+beameasurablefunction.IfU∈O-RVandthelimit log(U(x)) lim x→∞ log(x) exists,thenU∈M. TherelationshipsofM∞andM−∞withO-RV aresimpler. Proposition5. Forλ∈ ∞,−∞ , M O-RV=;. λ © ª T 3 Proofs ProofofTheorem1. • Proofofthenecessaryconditionof(i) AssumeU∈M withρ =−τ.Letr ∈Rsuchthatr 6=0. U – Ifr <τ Let0<ǫ<τ−r andδ>0.Byhypothesis,thereexistsaconstantx >1suchthat,for 0 x≥x ,U(x)≤δx−τ+ǫ,andthereexistsx >1suchthat,forx≥x ,U(x)≥x−τ−ǫ δ. 0 1 1 Hence,settingx :=max(x ,x ),forx≥x andt>1, a 0 1 a ± U(tx) tr ≤δ2tr(tx)−τ+ǫxτ+ǫ=δ2t−τ+r+ǫx2ǫ, U(x) andtheassertionthenfollowsast→∞since−τ+r+ǫ<0. 7 – Ifr >τ Let0<ǫ<r−τandδ>0.Byhypothesis,thereexistsaconstantx >1suchthat,for 0 x≥x ,U(x)≤δx−τ+ǫ,andthereexistsx >1suchthat,forx≥x ,U(x)≥x−τ−ǫ δ. 0 1 1 Hence,settingx :=max(x ,x ),forx≥x andt>1, a 0 1 a ± U(tx) 1 1 tr ≥ tr(tx)−τ−ǫxτ−ǫ= tr−τ−ǫx−2ǫ, U(x) δ2 δ2 andtheassertionthenfollowsast→∞sincer−τ−ǫ>0. • Proofofthesufficientconditionof(i) Letδ>0andη>0. Onetheonehand,sinceτ−δ 2<τ,byhypothesis,thereexistsaconstantx >1such a U(xt) that, for x ≥x , lim tτ−δ/2 ± =0. Hence, given x ≥x , thereexists t =t (x)>1 a a a a t→∞ U(x) suchthat,fort≥t ,tτ−δ/2U(tx)≤ηU(x),or a U(tx) xτ−δU(x) ≤η . (9) (tx)−τ+δ tδ/2 Onetheotherhand,sinceτ+δ 2>τ,byhypothesis,thereexistsaconstantx >1such b U(xt) that, for x ≥x , lim tτ+δ/2 ± =∞. Hence,given x ≥max(x ,x ),thereexists t = b a b b t→∞ U(x) t (x)>1suchthat,fort≥t ,tτ+δ/2U(tx)≥ηU(x),or b b U(tx) ≥ηxτ+δU(x)tδ/2. (10) (tx)−τ−δ Combining (9) and (10), given x ≥max(x ,x ) and for t ≥max(t ,t ), and using the a b a b changeofvariabley=txwithy→∞ast→∞,provide,forδ>0, U(y) U(y) lim =0 and lim =∞, y→∞y−τ+δ y→∞y−τ−δ whichimpliesthatU∈M withρ =−τ. U • Proofofthenecessaryconditionof(ii) Letr ∈Randη>0. Setr′<−r. SinceU ∈M∞thereexistsaconstantx0>1suchthat, forx≥x ,U(x)≤ηxr′.Hence,fort>1, 0 U(tx) tr+r′xr′ tr ≤η , U(x) U(x) andtheassertionthenfollowsast→∞sincer+r′<0. • Proofofthesufficientconditionof(ii) Let r ∈R. Taking r′ <−r, by hypothesis, there exists a constant x >1such that, for 0 x≥x , lim tr′U(xt) =0. Hence,forη>0,thereexistsaconstant t >1suchthat,for 0 0 t→∞ U(x) t≥t ,tr′U(tx)≤ηU(x),or 0 U(tx) U(x) ≤η . (tx)r xrtr+r′ Usingthechangeofvariabley=txandnotingthaty→∞ast→∞give,forr∈R,being r+r′>0, U(y) lim =0, y→∞ yr whichmeansthatU∈M∞. 8 • Proofofthenecessaryconditionof(iii) Letr ∈Randη>0. Setr′>−r.SinceU∈M−∞thereexistsaconstantx0>1suchthat, forx≥x ,U(x)≥ηxr′.Hence,fort>1, 0 trU(tx)≥η xr′ tr+r′, U(x) U(x) andtheassertionthenfollowsast→∞sincer+r′>0. • Proofofthesufficientconditionof(iii) Let r ∈R. Taking r′ <−r, by hypothesis, there exists a constant x >1such that, for 0 x≥x , lim tr′U(xt) =∞. Hence,forη>0,thereexistsaconstantt >1suchthat,for 0 0 t→∞ U(x) t≥t ,tr′U(tx)≥ηU(x),or 0 U(tx)≥ηU(x)t−r−r′. (tx)r xr Usingthechangeofvariabley=txandnotingthaty→∞ast→∞give,forr∈R,being −r−r′>0, U(y) lim =0, y→∞ yr whichmeansthatU∈M∞. ProofofCorollary1. LetU∈RVwithtailindexρ.Then,fort>1, U(tx) lim tr =tr+ρ, x→∞ U(x) whichimpliesthat,forǫ>0,thereexistsaconstantx >1suchthat,forx≥x , 0 0 U(tx) tr+ρ−ǫ≤tr ≤tr+ρ+ǫ. U(x) Hence,settingτ=−ρ,gives,ontheonehand,forr <τ, U(tx) −ǫ≤ lim tr ≤ǫ, t→∞ U(x) U(tx) whichimplies lim tr =0takingǫarbitrary,and,ontheotherhand,forr >τ, t→∞ U(x) U(tx) lim tr =∞. t→∞ U(x) Thereforeonehas,applyingTheorem1,thatU∈M withρ =ρ. U Finally,afunctionbelongingtoM butnottoRV isforinstancethefunctiongiveninExample 2. ProofofProposition1. • Proofof(i) Letǫ>0.BydefinitionofU∈M withρ =−τ,thereexistconstantsx ,x >1suchthat, U a b forx≥x ,U(x)≤x−τ+ǫ, and, forx≥x ,U(x)≥x−τ−ǫ. a b So, for x ≥ x :=max(x ,x ), x−τ−ǫ ≤U(x)≤ x−τ+ǫ. Hence, for any x ≤c <d <∞, 0 a b 0 onehas, setting M :=min(c−τ−ǫ,d−τ+ǫ)and M :=max(c−τ−ǫ,d−τ+ǫ), thatU satisfies c d M ≤U(x)≤M foranyx∈[c;d]. c d 9 • Proofof(ii) Letǫ>0. BydefinitionofU ∈M∞,thereexistsaconstantx0>1suchthat,forx≥x0, U(x)≤xǫ.Hence,foranyc≥x ,onehas,settingM :=cǫ,thatU satisfiesU(x)≤M for 0 c c anyx∈[c;∞). • Proofof(iii) Letǫ>0. BydefinitionofU ∈M−∞,thereexistsaconstantx0>1suchthat,forx≥x0, U(x)≥xǫ.Hence,foranyd ≥x ,onehas,settingM :=dǫ,thatU satisfiesU(x)≥M 0 d d foranyx∈[d;∞). ProofofTheorem2. LetµbetheLebesguemeasureonR. • Proofof(i) LetU ∈M withρ =−τandletr <τ. ApplyingTheorem1,(i),thereexistsx >1such U a that,forx≥x , a U(tx) lim tr =0. t→∞ U(x) Letx ≤c<d<∞.ThenusingEgoroff’stheorem(seee.g.[5]),thereexistsameasurable a A⊆[c;d]ofapositivemeasuresuchthat U(tx) limsuptr =0. t→∞x∈A U(x) Letusprovebycontradictionthatthepreviouslimitholdson[c;d]. Thensupposethat thereexistǫ>0, xn n∈N⊆[c;d],and tn n∈N⊆R+suchthattn→∞and © ª © ª U(t x ) lim tr n n >ǫ. (11) n→∞ n U(xn) ByProposition2onehas,denotinglog(A)= log(x):x∈A andnotingthatlog(A)hasa positivemeasure, © ª µ lim(log(A)−log(x )) ≥µ logA >0, n n→∞ ³ ´ ¡ ¢ whichimpliesthatthereexistaconstantlog(u)∈Randasubsequence xni i∈N⊆ xn n∈N suchthatlog(x )+log(u)∈log(A),i.e.ux ∈A.Notethatu>0. ni ni © ª © ª ByProposition1,(i),thereexist0<M ≤M <∞suchthatM ≤U(x)≤M ,x∈(c;d). c d c d Hence,onethenhas tr U(tnixni)= tni r U tuni uxni urU(uxni)≤ tni r U tuni uxni urMd. ni U(x ) u U³(ux ) ´ U(x ) u U³(ux ) ´ M ni µ ¶ ni ni µ ¶ ni c Notingthat tni r U((tni u)uxni)→0sinceux ∈Aandt u→∞asn →∞provide u U(ux ) ni ni i µ ¶ ± ni U(t x ) ± tr ni ni →0asn →∞,whichcontradicts(11). ni U(x ) i ni • Proofof(ii) LetU ∈M withρ =−τandletr <τ. ApplyingTheorem1,(i),thereexistsx >1such U b that,forx≥x , b U(tx) lim tr =∞. t→∞ U(x) 10

See more

The list of books you might like