loading

Logout succeed

Logout succeed. See you again!

ebook img

Robust Phase Estimation of Squeezed State PDF

file size0.32 MB
languageEnglish

Preview Robust Phase Estimation of Squeezed State

Robust Phase Estimation of Squeezed State ShibdasRoy*,IanR.Petersen,ElanorH.Huntington SchoolofEngineeringandInformationTechnology,UniversityofNewSouthWales,Canberra,Australia. *[email protected] Abstract: Optimal phase estimation of a phase-squeezed quantum state of light has been recently shown to beat the coherent-state limit. Here, the estimation is made robust to 3 uncertaintiesinunderlyingparametersusingarobustfixed-intervalsmoother. 1 0 © 2013 OpticalSocietyofAmerica 2 OCIScodes: 120.0120,270.0270. n a J 1. Introduction 0 3 Preciseestimationandtrackingofarandomlyvaryingopticalphaseiskeytoapplicationslikecommunication[1],and metrology[2].OptimalsmoothedestimationofawidelyvaryingphaseundertheinfluenceofastochasticOrnstein- ] Uhlenbeck(OU)processforaphase-squeezedbeamnoticeablysurpassesthemaximumaccuracythatcanbeobtained h p for coherentlight by 15 4% [3]. But, the estimation is very sensitive to fluctuations in the parametersunderlying ± - the phasenoiseorsqueezing,andis desiredto bemaderobust to suchuncertainties.We havealreadydemonstrated t n in Ref. [4],superiorphase estimationascomparedto the optimalcase fora coherentstate [5],usinga robustfixed- a intervalsmootherwheretheuncertainsystemsatisfiesacertainintegralquadraticconstraint(IQC)[6].Here,therobust u smoothingtechniqueisappliedtothecaseofsqueezedstateincomparisontotheoptimalcaseconsideredinRef.[3]. q [ 2. ModelofAdaptivePhaseEstimationinRef.[3] 1 v 2.1. ProcessModel 4 Thephasef (t)ofthecontinuousopticalphase-squeezedbeamismodulatedwithanOUnoiseprocess,suchthat 4 1 f˙(t)= lf (t)+√kn (t), (1) − 7 . wherel −1 isthecorrelationtimeoff (t),k determinesthemagnitudeofthephasevariationandn (t)isazero-mean 1 whiteGaussiannoisewithunityamplitude. 0 3 2.2. MeasurementModel 1 v: Thephase-modulatedbeamismeasuredbyhomodynedetectionusingalocaloscillator,thephaseofwhichisadapted i withthefilteredestimatef (t),therebyyieldinganormalizedhomodyneoutputcurrentI(t), X f ar I(t)dt≃2|a |[f (t)−f f(t)]dt+qR¯sqdW(t), R¯sq=s 2fe2rp+(1−s 2f)e−2rm, (2) where a istheamplitudeoftheinputphase-squeezedbeam,anddW(t)isWienernoisearisingfromsqueezedvacuum fluctua|tio|ns.TheparameterR¯ isdeterminedbythedegreeofsqueezing(r 0)andanti-squeezing(r r )and sq m p m bys 2= [f (t) f (t)]2 .Weusethemeasurementappropriatelyscaledasour≥measurementmodel, ≥ f h − f i q (t):=1/ R¯ [I(t)+2a f (t)]=2a / R¯ f (t)+w (t), (3) sq f sq q | | | | q wherew (t)= dW(t) isanotherzero-meanwhiteGaussiannoisewithunityamplitude. dt 3. RobustModel 3.1. UncertainSystem Weemploytherobustfixed-intervalsmoothingtechniquefromRef.[6]asusedinRef.[4].Weintroduceuncertainties d andd ,respectively,intheparametersl and2a / R¯ ,suchthatEq.(2.5)inRef.[6]takestheform: 1 2 sq | | Process: f˙=( l +√k D 1K)f +√kn , pMeasurement: q = 2a / R¯sq+D 2K f +w , (4) − (cid:18) | | q (cid:19) ml /√k where D 1 = d 1 0 ,D 2 = 0 d 2 ,|d 1|≤1,|d 2|≤1,K =(cid:20) 2m−a / R¯sq (cid:21). 0≤m <1 is the levelof uncer- (cid:2) (cid:3) (cid:2) (cid:3) | | tainty.D 1andD 2satisfy:||[ D ′1Q21 D ′2R12 ]||≤1,suchthatQ=R=1.ThepIQCofEq.(2.4)inRef.[6]forourmodel is: T T (w2+v2)dt 1+ z 2dt, (5) Z0 ≤ Z0 || || wherez=Kf istheuncertaintyoutput,andw=D Kf +n andv=D Kf +w aretheuncertaintyinputs. 1 2 3.2. Robustvs.OptimalSmoothersfortheUncertainSystem WeusethemethodfromRef.[4]tocomputeandcomparetheerrorsoftherobustandoptimalsmoothersasafunction ofd andd ,forvariousvaluesofm andwithk =1.9 104rad/s,l =5.9 104rad/s, a 2=1.00 106s 1,r =0.36, 1 2 − m andr =0.59asusedinRef.[3].Duetotheimplicitd×ependenceofR¯ an×ds 2,wecom| p|utetheer×rors 2uponrunning p sq f s severaliterationsuntils 2 matchesuptothe6th decimalplacetothatoftheprioriterationineachcase.Fig.1shows f thecomparisonfor20%and40%uncertainties.Clearly,the robustsmootherperformsmuchbetterthantheoptimal smootherasd and/ord approach 1foralllevelsofuncertainty. 1 2 − Optimal Smoother Optimal Smoother Robust Smoother Robust Smoother 0.04 0.08 0.07 0.035 0.06 2σs0.03 2σs0.05 0.04 0.025 0.03 0.02 0.02 1 1 0.5 1 0.5 1 0 0.5 0 0.5 δ1 −0.5 −1 −1 −0.5 0 δ2 δ1 −0.5 −1 −1 −0.5 0δ2 (a) (b) Fig.1.ComparisonofSmoothedErrorsforUncertainSystem: (a)m =0.2,(b)m =0.4. 4. Conclusion Thisworkextendsthetreatmentofrobustsmoothingtothecaseofsqueezedstate. ForR¯ =1,itboilsdowntothe sq coherentstatecaseofRef.[4]whenD =0.Theseresultsmaybedemonstratedexperimentallyaspartoffurtherwork. 2 References 1. J. Chen, J. L. Habif, Z. Dutton, R. Lazarus, and S. Guha, “Optical codeword demodulation with error rates belowthestandardquantumlimitusingaconditionalnullingreceiver,”NaturePhotonics6,374(2012). 2. V.Giovannetti,S.Lloyd,andL.Maccone,“Advancesinquantummetrology,”NaturePhotonics5,222(2011). 3. H.Yonezawa,D.Nakane,T.A.Wheatley,K.Iwasawa,S.Takeda,H.Arao,K.Ohki,K.Tsumura,D.W.Berry, T.C.Ralph,H.M.Wiseman,E.H.Huntington,andA.Furusawa,“Quantum-enhancedoptical-phasetracking,” Science337,1514(2012). 4. S. Roy, I. R. Petersen, and E. H. Huntington,“Adaptive continuoushomodynephase estimation using robust fixed-intervalsmoothing,”ToappearintheProceedingsoftheAmericanControlConference,2013. 5. T.A.Wheatley,D.W.Berry,H.Yonezawa,D.Nakane,H.Arao,D.T.Pope,T.C.Ralph,H.M.Wiseman,A.Fu- rusawa,andE.H.Huntington,“Adaptiveopticalphaseestimationusingtime-symmetricquantumsmoothing,” PhysicalReviewLetters104,093,601(2010). 6. S.O.R.Moheimani,A.V.Savkin,andI.R.Petersen,“Robustfiltering,prediction,smoothing,andobservability ofuncertainsystems,”IEEETrans.onCircuitsandSystemsI-FundamentalTheoryandAppl.45,446(1998).

See more

The list of books you might like