loading

Logout succeed

Logout succeed. See you again!

ebook img

Semimartingales and stochastic integration PDF

pages73 Pages
file size0.557 MB
languageEnglish

Preview Semimartingales and stochastic integration

Semimartingales and stochastic integration Spring 2011 ∗ Sergio Pulido ChrisAlmost† Contents Contents 1 0 Motivation 3 1 Preliminaries 4 1.1 Reviewofstochasticprocesses . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Reviewofmartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 PoissonprocessandBrownianmotion . . . . . . . . . . . . . . . . . . 9 1.4 Lévyprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Lévymeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.7 Integrationwithrespecttoprocessesoffinitevariation. . . . . . . . 21 1.8 Naïvestochasticintegrationisimpossible . . . . . . . . . . . . . . . . 23 ∗[email protected][email protected] 1 2 Contents 2 Semimartingalesandstochasticintegration 24 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Stabilitypropertiesofsemimartingales. . . . . . . . . . . . . . . . . . 25 2.3 Elementaryexamplesofsemimartingales . . . . . . . . . . . . . . . . 26 2.4 Thestochasticintegralasaprocess . . . . . . . . . . . . . . . . . . . . 27 2.5 Propertiesofthestochasticintegral . . . . . . . . . . . . . . . . . . . . 29 2.6 Thequadraticvariationofasemimartingale . . . . . . . . . . . . . . 31 2.7 Itô’sformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.8 ApplicationsofItô’sformula . . . . . . . . . . . . . . . . . . . . . . . . 40 3 TheBichteler-DellacherieTheoremanditsconnexionstoarbitrage 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 ProofsofTheorems3.1.7and3.1.8 . . . . . . . . . . . . . . . . . . . . 45 3.3 AshortproofoftheDoob-Meyertheorem . . . . . . . . . . . . . . . . 52 3.4 Fundamentaltheoremoflocalmartingales . . . . . . . . . . . . . . . 54 3.5 Quasimartingales,compensators,andthefundamentaltheoremof localmartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 Special semimartingales and another decomposition theorem for localmartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 Girsanov’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 Generalstochasticintegration 65 4.1 Stochasticintegralswithrespecttopredictableprocesses . . . . . . 65 Index 72 Chapter 0 Motivation Whystochasticintegrationwithrespecttosemimartingaleswithjumps? ◦ To model “unpredictable” events (e.g. default times in credit risk theory) oneneedstoconsidermodelswithjumps. ◦ A lot of interesting stochastic processes jump, e.g. Poisson process, Lévy processes. Thiscoursewillcloselyfollowthetextbook,Stochasticintegrationanddifferential equationsbyPhilipE.Protter,secondedition. Wewillnotcovereverychapter,and some proofs given in the course will differ from those in the text. The following numberscorrespondtosectionsinthetextbook. I Preliminaries. 1. Filtrations,stochasticprocesses,stoppingtimes,pathregularity,“func- tional”monotoneclasstheorem,optionalσ-algebra. 2. Martingales. 3. Poissonprocesses,Brownianmotion. 4. Lévyprocesses. 6. Localizationprocedureforstochasticprocesses. 7. Stieltjesintegration 8. Impossibilityofnaïvestochasticintegration(viatheBanach-Steinhaus theorem). II Semimartingalesandstochasticintegrals. 1–3. Definitionofthestochasticintegralwithrespecttoprocessesin(cid:76). 5. Propertiesofthestochasticintegral. 6. Quadraticvariation. 7. Itô’sformula. 8. StochasticexponentialandLévy’scharacterizationtheorem. III Bichteler-Dellacherietheorem. (NFLVR)impliesS isasemimartingale (NFLVR)andlittleinvestmentifandonlyifS isasemimartingale IV Stochasticintegrationwithrespecttopredictableprocessesandmartingale representationtheorems(i.e.marketcompleteness). Formoreinformationonthehistoryofthedevelopmentofstochasticintegra- tion,seethepaperbyProtterandJarrowonthattopic. 3 Chapter 1 Preliminaries 1.1 Review of stochastic processes The standard setup we will use is that of a complete probability space (Ω,(cid:70),(cid:80)) and a filtration (cid:70) = ((cid:70)t)0≤t≤∞ of sub-σ-algebras of (cid:70). The filtration can be thought of as the flow of information. Expectation (cid:69) will always be with respect to(cid:80)unlessstatedotherwise. Notation. Wewillusetheconvectionthat t,s,anduwillalwaysberealvariables, notincluding∞unlessitisexplicitlymentioned,e.g.{t|t ≥0}=[0,∞). Onthe otherhand,nandkwillalwaysbeintegers,e.g.{n:n≥0}={0,1,2,3,...}=:(cid:78). 1.1.1Definition. (Ω,(cid:70),(cid:70),(cid:80))satisfiestheusualconditionsif (i) (cid:70) containsallthe(cid:80)-nullsets. (ii) (cid:70)0isrightcontinuous,i.e.(cid:70) =(cid:84) (cid:70) . t s<t s 1.1.2Definition. A stopping time is a random time, i.e. a measurable function T :Ω→[0,∞],suchthat{T ≤t}∈(cid:70) forall t. t 1.1.3Theorem. Thefollowingareequivalent. (i) T isastoppingtime. (ii) {T <t}∈(cid:70) forall t>0. t PROOF: Assume T isastoppingtime. Thenforany t>0, (cid:91) (cid:95) {T <t}= {T ≤t− 1}∈ (cid:70) ⊆(cid:70) . n s t n≥1 s<t Conversely,sincethefiltrationisassumedtoberightcontinuous, (cid:92) (cid:92) {T ≤t}= {T <t+ 1n}∈ (cid:70)s=(cid:70)t+=(cid:70)t, n≥1 s>t so T isastoppingtime. (cid:131) 4 1.1. Reviewofstochasticprocesses 5 1.1.4Theorem. (i) If(Tn)n≥1isasequenceofstoppingtimesthen(cid:86)nTnand(cid:87)nTnarestopping times. (ii) If T andS arestoppingtimesthen T+S isastoppingtime. 1.1.5Exercises. (i) If T ≥S thenis T−S astoppingtime? (ii) ForwhichconstantsαisαT astoppingtime? SOLUTION: ClearlyαT neednotbeastoppingtimeifα<1. Ifα≥1then,forany t≥0, t/α≤t so{αT ≤t}={T ≤t/α}∈(cid:70)t/α⊆(cid:70)t andαT isastoppingtime. Let H be a stopping time for which H/2 is not a stopping time (e.g. the first hittingtimeofBrownianmotionatthelevel1). Take T =3H/2andS=H,both stoppingtimes,andnotethat T−S=H/2isnotastoppingtime. (cid:250) 1.1.6Definition. Let T be a stopping time. The σ-algebras of events before time T andeventsstrictlybeforetime T are (i) (cid:70) ={A∈(cid:70) :A∩{T ≤t}∈(cid:70) forall t}. T t (ii) (cid:70)T−=(cid:70)0∨σ{A∩{t<T}:t∈[0,∞),A∈(cid:70)t}. 1.1.7Definition. (i) AstochasticprocessX isacollectionof(cid:82)d-valuedr.v.’s,(Xt)0≤t<∞. Astochas- ticprocessmayalsobethoughtofasafunctionX :Ω×[0,∞)→(cid:82)d orasa randomelementofaspaceofpaths. (ii) X isadaptedifX ∈(cid:70) forall t. t t (iii) X is càdlàg (Xt(ω))t≥0 has left limits and is right continuous for almost all ω. X iscàglàdifinsteadthepathshaverightlimitsandareleftcontinuous. (iv) X is a modification of Y if (cid:80)[X (cid:54)= Y ] = 0 for all t. X is indistinguishable t t fromY if(cid:80)[X (cid:54)=Y forsome t]=0. t t (v) X−:=(Xt−)t≥0 whereX0−:=0andXt−:=lims↑tXs. (vi) Foracàdlàgprocess X,∆X :=(∆Xt)t≥0 istheprocessofjumpsof X,where ∆Xt :=Xt−Xt−. 1.1.8Theorem. (i) If X is a modification of Y and X and Y are left- (right-) continuous then theyareindistinguishable. (ii) IfΛ⊆(cid:82)d isopenandX iscontinuousfromtheright(càd)andadaptedthen T :=inf{t>0:X ∈Λ}isastoppingtime. t (iii) If Λ ⊆ (cid:82)d is closed and X is càd and adapted then T := inf{t > 0 : X ∈ t ΛorXt−∈Λ}isastoppingtime. (iv) If X iscàdlàgandadaptedand∆XT1T<∞=0forallstoppingtimes T then ∆X isindistinguishablefromthezeroprocess. PROOF: Readtheproofsofthesefactsasanexercise. (cid:131) 6 Preliminaries 1.1.9Definition. (cid:79) = σ(X : X isadaptedandcàdlàg) is the optional σ-algebra. AstochasticprocessX isanoptionalprocessifX is(cid:79)-measurable. 1.1.10Theorem(Débuttheorem). IfA∈(cid:79) thenT(ω):=inf{t:(ω,t)∈A},the débuttimeofA,isastoppingtime. Remark. Thistheoremrequiresthatthefiltrationisrightcontinuous. Forexample, supposethatT isthehittingtimeofanopensetbyaleftcontinuousprocess. Then youcanprove{T <t}∈(cid:70) foralltwithoutusingrightcontinuityofthefiltration, t butyoucannotnecessarilyprovethat{T =t}∈(cid:70) withoutit. Youneedto“look t intothefuture”alittlebit. 1.1.11Corollary. If X is optional and B ⊆(cid:82)d is a Borel set then the hitting time T :=inf{t>0:X ∈B}isastoppingtime. t 1.1.12Theorem. IfX isanoptionalprocessthen (i) X is((cid:70) ⊗(cid:66)([0,∞)))-measurableand (ii) XT1T<∞∈(cid:70)T foranystoppingtime T. Inparticular,(Xt∧T)t≥0isalsoanoptionalprocess,i.e.optionalprocessesare“sta- bleunderstopping”. 1.1.13Theorem(Monotoneclasstheorem). SupposethatH iscollectionofbounded(cid:82)-valuedfunctionssuchthat (i) H isavectorspace. (ii) 1Ω∈H,i.e.constantfunctionsareinH. (iii) If (fn)n≥0 ⊆ H is monotone increasing and f := limn→∞ fn (pointwise) is boundedthen f ∈H. (In this case H is called a monotone vector space.) Let M be a multiplicative col- lection of bounded functions (i.e. if f,g ∈ M then fg ∈ M). If M ⊆ H then H containsalltheboundedfunctionsthataremeasurablewithrespecttoσ(M). PROOF(OFTHEOREM1.1.12): UsetheMonotoneClassTheorem. Define M :={X :Ω×[0,∞)→(cid:82)|X iscàdlàg,adapted,andbounded} H:={X :Ω×[0,∞)→(cid:82)|X isboundedand(i)and(ii)hold} ItcanbecheckedthatH isamonotonevectorspace, M isamultiplicativecollec- tion, andσ(M)=(cid:79). Ifweprovethat M ⊆H thenwearedone. Let X ∈ M and define ∞ X(n):=(cid:88)k=1X2kn1[k2−n1,2kn). SinceX isrightcontinuous,X(n)→X pointwise. LetB beaBorelset. {X(n)∈B}=(cid:91)∞ (cid:110)X ∈B(cid:111)×(cid:20)k−1, k (cid:19)∈(cid:70) ⊗(cid:66)([0,∞)) k=1 2kn 2n 2n 1.2. Reviewofmartingales 7 ThisprovesthatX satisfies(i). Toprove(ii),let T beastoppingtimeanddefine (cid:168)k if k−1 ≤T < k T := 2n 2n 2n n ∞ if T =∞. Thenthe T ’sarestoppingtimesand T ↓T. n n (cid:91)∞ (cid:110) (cid:111) (cid:26) k (cid:27) {X ∈B}∩{T ≤t}= X ∈B ∩ T = ∈(cid:70) Tn n k=1 2kn n 2n t 2kn≤t ThisshowsthatX ∈(cid:70) . SinceX isrightcontinuous, T T n n XT1T<∞=nl→im∞XTn1Tn<∞. It can be shown that, since the filtration is right continuous, (cid:84)∞ (cid:70) =(cid:70) , so XT1T<∞∈(cid:70)T andX satisfies(ii). ThereforeX ∈H. n=1 Tn T (cid:131) If X is càdlàg and adapted then an argument similar to that in the previous proofshowsthatX|Ω×[0,t]∈(cid:70)t⊗(cid:66)([0,t])forall t,i.e.X isprogressivelymeasur- able. By a similar monotone class argument, it can be shown that every optional processisaprogressiveprocess. 1.1.14Definition. (cid:86) := σ(X : X isprogressivelymeasurable) is the progressive σ-algebra. 1.1.15Corollary. (cid:79) ⊆(cid:86). 1.2 Review of martingales 1.2.1Theorem. Let X bea(sub-, super-)martingaleandassumethat(cid:70)satisfies theusualconditions. ThenX hasarightcontinuousmodificationifandonlyifthe function t (cid:55)→ (cid:69)[X ] is right continuous. Furthermore, this modification has left t limitseverywhere. PROOF(SKETCH): TheprocessX(cid:101)t :=lims↓t Xs isthecorrectmodification. (cid:131) s∈(cid:81) 1.2.2Corollary. Everymartingalehasacàdlàgmodification, uniqueuptoindis- tinguishability. 1.2.3Theorem. LetX bearightcontinuoussub-martingalewithsup (cid:69)[X+]< t≥0 t ∞. ThenX∞:=limt→∞Xt existsa.s.andX∞∈L1. 1.2.4Definition. Acollectionofrandomvariables(Uα)α∈Aisuniformlyintegrable oru.i.if nl→im∞sαu∈pA(cid:69)[1|Uα|>nUα]=0. 8 Preliminaries 1.2.5Theorem. Thefollowingareequivalentforafamily(Uα)α∈A. (i) (Uα)α∈Aisu.i. (ii) supα∈A(cid:69)[|Uα|]<∞ and for all (cid:34) >0 there is δ >0 such that if (cid:80)[Λ]<δ thensupα∈A(cid:69)[1ΛUα]<(cid:34). (iii) (delaVallée-Poussincriterion)Thereisapositive,increasing,convexfunc- tionG on[0,∞)suchthatlimx→∞ G(xx) =∞andsupα∈A(cid:69)[G(|Uα|)]<∞. 1.2.6Theorem. ThefollowingareequivalentforamartingaleX. (i) (Xt)t≥0 isu.i. (ii) X isclosable,i.e.thereisanintegrabler.v. Z suchthatX =(cid:69)[Z|(cid:70) ]. t t (iii) X convergesin L1. (iv) X∞=limt→∞Xt a.s.andin L1 andX∞ closesX. Remark. (i) If X is u.i. then X is bounded in L1 (but not vice versa), so Theorem 1.2.3 implies that Xt → X∞ a.s. Theorem 1.2.6 upgrades this to convergence in L1,i.e.(cid:69)[|Xt−X∞|]→0. (ii) If X is closed by Z then (cid:69)[Z|(cid:70)∞] also closes X, where (cid:70)∞ := (cid:87)t≥0(cid:70)t. Furthermore,X∞=(cid:69)[Z|(cid:70)∞]. 1.2.7Example(Simplerandomwalk). Let(Zn)n≥1 bei.i.d.with 1 (cid:80)[Z =1]=(cid:80)[Z =−1]= . n n 2 Take(cid:70) :=σ{Z :k≤t}andX :=(cid:80)(cid:98)t(cid:99) Z . ThenX isnotaclosablemartingale. t k t k=1 k 1.2.8Example. Let M :=exp(B − 1t), the stochastic exponential of Brownian t t 2 motion,amartingale. Then M →0a.s.byTheorem1.2.3becauseitisapositive t valued martingale (hence −M is a sub-martingale with no positive part). But (cid:69)[|M |]=1forall t so M isnotu.i.byTheorem1.2.6. t 1.2.9Theorem. (i) If X is a closable (sub-, super-) martingale and S ≤ T are stopping times then(cid:69)[X |(cid:70) ]=X (≥,≤). T S S (ii) If X is a (sub-, super-) martingale and S ≤ T are bounded stopping times then(cid:69)[X |(cid:70) ]=X (≥,≤). T S S (iii) IfX isarightcontinuoussub-martingaleand p>1then (cid:18) p (cid:19) (cid:107)supX (cid:107) ≤ sup(cid:107)X (cid:107) . t≥0 t Lp p−1 t≥0 t Lp Inparticularif p=2then(cid:69)[sup X2]≤4sup (cid:69)[X2]. t≥0 t t≥0 t (iv) (Jensen’sinequality)Ifϕisaconvexfunction, Z isanintegrabler.v.,and(cid:71) isasub-σ-algebraof(cid:70) thenϕ((cid:69)[Z|(cid:71)])≤(cid:69)[ϕ(Z)|(cid:71)]. 1.3. PoissonprocessandBrownianmotion 9 1.2.10Definition. Let X be a process and T be a random time. The stopped processisXtT :=Xt1t≤T +XT1t>T,T<∞=XT∧t. If T isastoppingtimeandX iscàdlàgandadaptedthensoisXT. 1.2.11Theorem. (i) IfX isau.i.martingaleandT isastoppingtimethenXT isau.i.martingale. (ii) IfX isamartingaleand T isastoppingtimethenXT isamartingale. Thatis,martingalesare“stableunderstopping”. 1.2.12Definition. LetX beamartingale. (i) IfX ∈L2 forall t thenX iscalledasquareintegrablemartingale. t (ii) If(Xt)t∈[0,∞) isu.i.andX∞∈L2 thenX iscalledan L2-martingale. 1.2.13Exercise. Any L2-martingale is a square integrable martingale, but not conversely. SOLUTION: Let X be an L2-martingale. Then X∞ ∈ L2 and so, by the conditional versionofJensen’sinequality, (cid:69)[Xt2]=(cid:69)[((cid:69)[X∞|(cid:70)t])2]≤(cid:69)[(cid:69)[X∞2|(cid:70)t]]=(cid:69)[X∞2]<∞. Therefore X ∈ L2 forall t. Wehavealreadyseenthatthestochasticexponential t of Brownian motion is not u.i. (and hence not an L2-martingale) but it is square integrablebecausethenormaldistributionhasafinitevaluedmomentgenerating function. (cid:250) 1.3 Poisson process and Brownian motion 1.3.1Definition. Suppose that (Tn)n≥1 is a strictly increasing sequence of ran- dasosmoctiaimteedswwiitthh(TT1n)>n≥01.aT.sh.eTrhanedpormocetismseNTt =:=(cid:80)sun≥p1n≥11TnT≤ntisisththeeecxopulonstiionngtpimroec.esIsf T =∞a.s.thenN isacountingprocesswithoutexplosion. 1.3.2Theorem. A counting process is an adapted process if and only if T is a n stoppingtimeforalln. PROOF: If N isadaptedthen{t < Tn}={Nt <n}∈(cid:70)t forall t andall n. There- fore, for all n, {T ≤ t}∈(cid:70) for all t, so T is a stopping time. Conversely, if all n t n the T arestoppingtimesthen,forall t,{N ≤n}={t≤T }∈(cid:70) foralln. Since n t n t N takesonlyintegervaluesthisimpliesthatN ∈(cid:70) . (cid:131) t t 1.3.3Definition. AnadaptedprocessN iscalledaPoissonprocessif () N isacountingprocess. (i) N −N isindependentof(cid:70) forall0≤s<t<∞(independentincrements). t s s 10 Preliminaries (ii) Nt−Ns=(d) Nt−s forall0≤s<t<∞(stationaryincrements). Remark. ImplicitinthisdefinitionisthataPoissonprocessdoesnotexplode. The definition can be modified slightly to allow this possibility, and then it can be proved as a theorem that a Poisson process does not explode, but the details are verytechnicalandrelativelyunenlightening. 1.3.4Theorem. SupposethatN isaPoissonprocess. (i) N iscontinuousinprobability. (ii) N =(d)Poisson(λt)forsomeλ≥0,calledtheintensityorarrivalrateofN. In t particular,N hasfinitemomentsofallordersforall t. t (iii) (Nt−λt)t≥0 and((Nt−λt)2−λt)t≥0 aremartingales. (iv) If(cid:70)tN :=σ(Ns:s≤t)and(cid:70)N =((cid:70)tN)t≥0 then(cid:70)N isrightcontinuous. PROOF: Letα(t):=(cid:80)[Nt =0]for t≥0. Foralls<t, α(t+s)=(cid:80)[Nt+s=0] =(cid:80)[{Ns=0}∩{Nt+s−Ns=0}] non-decreasingandnon-negative =(cid:80)[Ns=0](cid:80)[Nt+s−Ns=0] independentincrements =(cid:80)[N =0](cid:80)[N =0] stationaryincrements s t =α(t)α(s) If t ↓ t then {N =0} (cid:37){N =0}, so α is right continuous and decreasing. It n t t follows that eithenr α ≡ 0 or α(t) = e−λt for some λ ≥ 0. By the definition of countingprocessN =0,soαiscannotbethezerofunction. 0 (i) Observethat,given(cid:34)>0small,foralls<t, (cid:80)[|Nt−Ns|>(cid:34)]=(cid:80)[|Nt−s|>(cid:34)] stationaryincrements =(cid:80)[Nt−s>(cid:34)] N isnon-decreasing =1−(cid:80)[Nt−s=0] N isintegervalued =1−e−λ(t−s) →0ass→t. Therefore N is left continuous in probability. The proof of continuity from therightissimilar. (ii) First we need to prove that limt→0 1t (cid:80)[Nt = 1] = λ. Towards this, let β(t):=(cid:80)[Nt ≥2]for t≥0. Ifwecanshowthatlimt→0β(t)/t=0thenwe wouldhave (cid:80)[N =1] 1−α(t)−β(t) lim t =lim =λ. t→0 t t→0 t It is enough to prove that limn→∞nβ(1/n) = 0. Divide [0,1] into n equal subintervals and let S be the number of subintervals with at least two ar- n rivals. ItcanbeseethatS =(d)Binomial(n,β(1/n))becauseofthestationary n andindependentincrementsof N. Inthedefinitionofcountingprocessthe

See more

The list of books you might like