loading

Logout succeed

Logout succeed. See you again!

ebook img

Smarandache Numerical Functions PDF

pages8 Pages
release year1994
file size0.28 MB

Preview Smarandache Numerical Functions

SMARANDACHE NUMERI CAL FtJNCTI ONS by Ion Balacenoiu Dapar~arnan~ of Ma~hema~ics Univ.rsi~y of Craiova,Romania F.Smarandache defines [1) a numsricaL functton • 5 :~ --- ~ .SCn~ is the smaLLest inte~er m such that m! is diuisibLe by n. UsinS certain res1..J.L ts on standardised str1..J.ctures, three ~inds of Smarandache functions are defined and are etabLished some compatibiLity reLations between these /1..J.nctions. 1. Standardising functions.Le~ X be a nonvoid set, r c XxX an equ1valence rela~i~n, X ~he corresponding quo~i.n~ se~ and (I,SJ a ordered ~o~ally se~. 1.1 Definition.If 9 : X --- I is an arbi~rarely injec~ive func~ion, t.hen f X --- I defined by f(xJ = gCxJ is a s~andardising funct.ion. In t.his case t.he se~ X is said t.o be ( r , C I , SJ , f J s~andardised. = If rand r are ~wo equivalence rela~ions on X,~hen r r ~ r is 1 4t 1 4t defined as x r y if and only if x r y and x r y. Of course r 1 s 1 Z an equivalence rela~ion. In t.he following theorem we consider func~ions having ~he same x ___ I mcnc~on1cit.y.The func~ions f i = 1, S are of ~he same monc~onici~y if for every x,y from X i~ resul~s = f Ie C xJ S f Ie C yJ if and only if f.CxJSfCy) for k,j 1,s J J 6 x 1. 2 Theorem. I f the standardi si n9 funct.1. ons f -----+ I corresponding t.o t.he equ~valence relations r , i = 1, S , ar e of '- t.he some monot.onicit.y t.hen f = m41.X { f } is a st.andardi sl.ng '- '- funct.l.on corresponding to r = r ha.vl.ng same monot.onicl.t.y as f. '- = Proof. We give t.he proof of t.heorem in case s 2 .Let. x x r r 1 Z x be t.he equl.valence clases of x corresponding t.o r rand t.o 1 2 r = r r respect.l.vely and X X x t.he quotient. set.s on X. t 2 r r 1 2 We have f (x) = g (x ) and f (xJ :z 9 ex) , ....,her e 1 t r 2 2 r 1 2 gi X ---+. I , i=t,2 are inject.ive functions. The funct.ion r '- 9 X -->I defined by g(x )= ~~x{g ex ),g (x )} is inject.ive. r r 1 r 2 r t 2 Indeed if X- 1 ~ X- 2 and max{g (x- t ),g (x- t· )} = r r 1 r 2 r t 2 = - 2 - 2 max{g (x ),g (x)} ,then be cause of the injectivit.y of 1 r 2 r t 2 and ""'e ha ve for exampl e max{g (x"1 ), 9 (x"1 )} = t r 2 r 1 2 = 9 (x- 1 ) = 9 (x- 2 J = max {g (x- 2 J, 9 e x- 2 J ) and ....,e obt.a.in a t r 2 r t r 2 r 1 ;z t 2 cont.radict.ion because f (x2) = g(x- 2 J < 9 (x- t J = f (Xl) t t r t r t t 1 f (xl) = 9 (x"t J < g ex-2 J =f (xz) ,t.hat. is 2 2 r Z r 2 t z f and f are not. of t.he sa.me monot.onicity From the injec- 1 2 t.ivit.y of 9 it. result.s t.hat. f:X ---+.I defined by f( xJ = g( x J r is a st.andardising funct.ion.In a.ddit.ion we have g(x- I ) S g(x-2 ) <-+ max{ g (x- 1 J, 9 (x- 1 J ) S max{ go (x- Z J, 9 (x- 2 ) } ~ r r t r Z r t r Z r 1 2 1 2 1 t • 2 2 1 2 max{ f (x J , f eX )\.-S max{ f ex J. f (x J) ... f (x )Sf ex J and 1 2 .. l 1 2 1 1 f are of t.he same monot.onicit.y. Z 7 Le~ us supose now that T and ..L are two algebraic lows on X and I respecti vel y. 1. 3. Definition. The standardising function f: X __ I :.s said t.o :::e with T and ..L if for every X.y :.n X lhe t.r:.ple+_ C[CX), fCy), fCxTY)) satisfies ~he condilion ~. In lh:.s case it is said lhat. lhe function f -st.andardise t.he st.ruc- ~ t.rure CX'T) in t.he st.ructure CI,S,..L). * For example,if f is the Smarandache function S: IN --+ IN ,C SC n) :.s t.he smallest int.eger such t.hat. C SC n))! is di vi s:. bl e by n) lhen we get. t.he following ~-stadardisations: a) S ~ -standardise (IN * ,.) in (IN * ,S,+) because we have 1 :SCa.b)SSCa)+SCb) ~ 1 b) but. S verifie also lhe relat.ion !: • maxCSCa) ,SCb))SSCa. b) SSC a) . SCb) 2' • * . so S ~ -standardi se the structure C IN ,.) in CIN ,:S,.) 2 2. Smarandache functions of first kind •. The Smarandache function S is defined by means ot t.he tollowing functions S ~ for every prime number p let S: IN* -> IN* having p p n t.he property that CS Cn))! is di visibl e by p and is the p smallest. posit.ive integer with this property. Using the not.ion ot st.andardising functions in t.his section we give some generalisa- sion ot s. p 2.1.Definition.For every n IN* the relation reIN-x IN* is deti E n * ned as -follo......-s: i) if n= u1.c u=l or u2 p number pr i me • i EfN ) and a.b EO IN t.hen a r n b it and only it it exi st.s leE IN- such i.a l.b t.hat. Ie: ! :II M u Ie: ! = M U and le is the smallest posit.ive :.nt.eger with t.his propert.y. 8 I. ~ I. 1.1.) if :"1== PI 1 . Pz z P Ii t..hen a :- = r " r " " r n P t. 1 PzI. z P I. Ii 1 ~ 2.2. Daf i ni t. ion. For each n E t..he Smarandache funct..ion of . - first. kind is t..he numerical funct.ion S : IN -> IN def'i ned a.s follo ..... s n i) if n :2 ul.C u==l or u=p number pri me) t..hen S C a) = k, k bel:"lg n la t..he smallest. posit..ive int..eger ..... i t..h t..he propert..y t.hat.. lc:! = M u ... 1.. I. 1 2 s 1.1. ) 1. n = Pi . P2 P5 t..hen S n Ca) = l~t~; S P I. J C a.)} j Let.. us observe t..hat.. a) t..he funct..ions S are st..andardising funct.ions corresponding n • t..o t..he equivalence relat.ions r and for n=l ..... e get. x = IN - n r 1 for every xe IN and S Cn) = 1 for every n. 1 b) if n=p t.hen S is t..he funct.ion S def'ined by Smarandache. n p c) t..he funct.ions S are increasing and sO,are of' t.he same mono- n Lonicit..y in t..he sense given in t..he above sect.i on. . - 2.3.Theore~The f'unct.ions S ,for n @ IN , L -st.andardise CIN ,+) in n 1 * CIN ,::S,+) by L: max{S C a) ,S C b) }::SS C a+b)::SS C a) +S C b) for 1 n n n n n 1\.,* * * ,::s,.) every a, b E Ln and L z -st..andardise C IN ,+) in CIN by • ::s ::s L z max-CS n Ca) ,Sn Cb)} S n Ca+b) S n Ca). S n Cb) ,f'or every a,b E IN * P.ro of. Let., fo-r inst..ance, p be a prime number ,n=pi .,.1 E IN and a == S C a), b = S . C b) ,le" S C a+b) .Then by t.he def'init.ion of' S n I. I. I. P P P CDef'init.ion 2.2,) t.he numbers a * ,b - ,le are t.he smallest. posi- t..ive int.egers such t.hat. a•! =Mipa, b-c== u...p i.b and le!=MpiCa-+b). - Because a ::Sle and b * ::s le ,so max{a ,b )::s Ie: That.. is- -t..he firs_t. .in equalit..ies in Land L holds. 1 z = • b*) = .u..._.. ·,. b-!-- u... piCa+b) No ...... Ca +b)! a !Ca +1). . Ca + and 9 • • so k ~ a + b which implies that r: is valide. 1 1-• If p , fro. the first case we have • r: . 1Ia.x{S ( a) , S (b)} ~ 5 ( a+b) ~ 5 . (a) + S . (b),j=i7s t . P \. J P \. j p I. j pIJ. PIJ.. in consequence .ax{maxS (a) , aaxS (b)}~ aax{S . (a+b)} ~ 1l~{S (a)} + J pI.J J P i. J J P I. J. p.1-J J J J J = aax{ S (b) } , j 1,s That is J I- P J J Dlax{S (a),S (b)} S 5 (a+b) ~ 5 Ca) + 5 (b) n n n n n For the proof of the second part in r: let us notice that .... z (a+b) I ~ (ab) I ~ a+b ~ ab a >.1 and b > 1 and that ours inequality is satisfied for n=1 because 8 (a+b)=S (a)= 1 t = = 5 (b) 1. t • • Let now n>l.It results that for a = S (a) we have a > 1. Indeed, n • if then a = 1 if and only if S (a) = n. = = lIlax {s (a)} 1 =p = 1 J P I. J ' J • so n=l.It results that for every n>l we have S (a)= a >1 and n • • • • • Sn(b)= b > 1.Then (a +b )1 ~ (a .b )! we obtain 5 (a+b) S S (a) + S (b)~ S (a).S (b) froll n > 1. n n n n n • 3. SlIIarandache functions of ttl. second kind. For every n e IN , let S by the Smarandache function of the first kind defined above. n 3.1. Definition. The Smarandache functions of the second kind are • • k • the functions N ----+ IN defined by 5 (n) =8 (k), for k EfN • n We observe that for k=l the function SK is the snarandache function S defined in [lJ,with the modify S{l)= 1.Indeed for. = 11>1 sl(n) = Sn(l) Jn~X{Sp\(l)} = 1I~{Sp ( i. )} = sen). j J 10 3. 2. Theore& The 8marandache functions of the second kind L -stan- 3 • • dardise (~,.) in (~,~,+) by l:. max{l(a),l(b)} s sle(a.b) s slc(a) + Slc(b),for every a,b E~· 3 . • • and l: -standardise (IN ,.) in (~ ,~,.) by 4 Ie: Ie Ie le le • l: . max{S (a),S (b)} ~ s (a.b) ~ S (a).S (b),for every a,bEN 4· le Proof.The equivalence relation corresponding to sle is r, defined Ie • • • Ie by arb if and only if there exists a E IN such that a I =Ma , • • a 1= ~le and a is the smallest integer with this nu prop~rty. That is, the functions sle are standardising functions attached to le the equivalence relations r. This functions are not of the so.e monotonicity because, for exaa z z pIe, sZ(a) s SZ(b) ~ s(a ) s S(b ) and fro. these inequalities S1 ( a) s S1 (b) does not result. Jc • le • Ie Now for every a,b E IN· let S (a) = a ,S (b) = b ,8 (a.b)= s. • • Then a ,b,s are respectively these smallest positive integers • Ic • • Ie Jc Ie such that a = Ma , b I = Kb ,sl = M(a b ) and so sl =Ma = le • • • • =Mb ,that is, aSs and b S s,which implies that .ax{a,b }Ss lc Ic Ie or max { S (a), 8 (b)} S 8 (a. b ) (3.1) •• = •• = Ic Ie Because of the fact that (a + b ) 1 M (a 1 b I) M (a b ), it re- • • suIts that s ~ a + b ,so l ( a . b ) S sle ( a ) + Sic ( b ) ( 3 .2) From (3.1) and (3.2) it results that max{SI e (a),8l eb( )} -< S le(a ) + Sle(b) (3.3) Which is the relation ~ 3. • • •• Ie Ie Ie Fro", (a b ) 1 = M(a !.b !) it results that S (a.b) S S (a).S (b) and thus the relation ~ 4 11 4. The Snar~nd~che ftmctions of the third kind. We considere two arbitrary sequances (a) 1=a ,a '· .. ,a 1 z , ••• n (b) l=b,b, ... ,b .. 1 Z n b..:. wi th the properties that ~r"\ = ~. an' ~n = b • Obviously, there are n infinitely many such sequences;because chosinq an arbitrary value for a, the next terms in the net can be easily determined by the Z imposed condition. - b b - = Let now the function f :{N ->IN defined by f (n) 5 (b ), a- a- a- n n 5 is the 5marandache function of the first kind. Then it is ea- a n sily to see that : = = = ( i) for a 1 and b n n !N- it results that fb 5 @ n n' a- 1 (ii) for a = n and b = 1 n e {N- it results that fb = 51 n n' c:L 4. 1. Definition. The" 5marandache functions of the third kind are the b = fb functions S in the case that the sequances (a) and (b) a- a- are different from those concerned in the situation (i) and (ii) from above. - 4.2-.Theore~ The functions I:~-standardise (IN ,.) in (IN ,S, +,.) by I: : max {fb ( k) , fb ( n)} S fb ( k. n) S b . fb ( k) + h f~ (n) ~ a- c:L c:L n a- ~ _ Proof.Let = k-, f b (n) = 5 (b) = n • and c:L a- n n =5 (h) = t . Then .k -,n- and t are the smallest positive in- a- ~,.., len ~ • bn a.:n~r "\ teqers such that k I = H ~ , n 1= H a and tJ= H n of course, • • aax{k ,n } S t (4.1) 12 • • b • • b Now, because (bJ,: . n ) I = H(n I} Ie (b . k )! = H(k ! ) n and n - - - - - • ble b (bJ,: n + b k ) I = H[ (b n )!.Cb k )I] = H[ (n ! ) . (k ! ) n] = n lc n b blc b n = H[ (a (~ ) n ] it results that n - - t ~ bnk + ~n (4.2) Fro. (4.1) and (4.2) we obtain ( 4 .3) From (4.3) we qet L ,so the Smarandache functions of the ~ third kind satisfy L: max{S b (k),S b (n)} ~ Sb (1m) ~ b Sb (k) + h Sb (nl,for evry k,ne!N - " a. a. a. no. Ko. 4. 3. Example. Let the sequances Ca) and (n) defined by a = b = n. n n • neiN • The correspondinq Smarandache function of the third kind is S a. :rN----+rN • Sa . (n) = S Cn) and a: a. n - ,for every k,n&!N This relation is equivalent with the following relation written by meens th the SJftarandache function: '~i References [1] F.Smarandache,A Function in the Number Theory,An.Univ. Timisoara,seria st. mat Vol. XVIII,fasc.1,pp.79-88.1980. [2] Smarandache Function-Journal-Vol.l No.1,DeceMber 1990. 13

See more

The list of books you might like