loading

Logout succeed

Logout succeed. See you again!

ebook img

Smoothing Spline ANOVA Models PDF

pages175 Pages
release year2012
file size2.18 MB
languageEnglish

Preview Smoothing Spline ANOVA Models

Smoothing Spline ANOVA Models Chong Gu DepartmentofStatistics PurdueUniversity June 21, 2012 ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 1/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 3/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45

See more

The list of books you might like