loading

Logout succeed

Logout succeed. See you again!

ebook img

Spectral monitoring of AGNs: Preliminary results for Ark 564 and Arp 102B PDF

file size0.17 MB
languageEnglish

Preview Spectral monitoring of AGNs: Preliminary results for Ark 564 and Arp 102B

Baltic Astronomy, vol.xx, xx–xx, 2012 SPECTRAL MONITORING OF AGNs: PRELIMINARY RESULTS FOR Ark 564 AND Arp 102B 2 1 A. I. Shapovalova,1 L. Cˇ. Popovi´c,2 D. Ili´c,3 A. Kovaˇcevi´c,3 J. Kovaˇcevi´c,2 A. 0 N. Burenkov,1 V. H. Chavushyan4 2 1 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, n Karachaevo-Cherkesia 369167, Russia; [email protected] a 2 Astronomical Observatory, Volgina 7, J 11160 Belgrade, Serbia; [email protected] 2 3 Department of Astronomy, Faculty of Mathematics, University of Belgrade 1 Studentski trg 16, 11000 Belgrade, Serbia; ] 4 Instituto Nacional de Astrofsica, ptica y Electrnica, Apartado Postal 51, CP O 72000, Puebla, Pue, Mexico C . h Received: ; accepted: p - o Abstract. We present preliminary results of the long term spectral moni- r toring of two active galactic nuclei with different broad line shapes: Ark 564 t s and Arp 102B. Ark 564 is a bright nearby narrow line Syfert 1 (NLS1) galaxy a with relatively narrow permitted optical emission lines and a high FeII/Hβ [ ratio, while Arp 102B is a nearby broad-line radio galaxy with broad double- 2 peaked Balmer emission lines. The spectra of Ark 564 were observed during v 11-year period (1999-2009) and the spectra of Arp 102B in the 12-year period 1 (1998-2009),with SAO 6-m and 1-m telescopes (Russia) and the GHAO 2.1-m 0 telescope (Cananea, Mexico). 3 Key words: galaxies: active/quasars: individual: Ark564,Arp102B/line: 2 profiles . 1 0 1. INTRODUCTION 2 1 Active galactic nuclei (AGN) often exhibit variability in the broad emission lines. : Inspite ofmany papersdevotedto the physicalproperties(physics andgeometry, v see e.g. Sulentic et al. 2000) of the broad line region (BLR) in AGN, the true i X nature of the BLR is not completely revealed. The broad emission lines (BEL), r can give us many information about the BLR geometry and physics. Especially a the variability in the BEL profiles and intensities could be used for investigating the BLR nature. A long-term spectral monitoring of the nucleus of some AGN has revealed a time lag in the response of the broad emission lines relative to flux changes in the continuum (e.g. Wanders and Peterson 1996, Kollatschny and Dietrich 1997). This lag depends on the size, geometry, and physical conditions of the 278 A. I Shapovalova, L.Cˇ. Popovi´c, D. Ili´c et al. BLR. Thus, the search for correlations between the nuclear continuum changes and flux variations in the broad emission lines may serve as a tool for mapping the geometrical and dynamical structure of the BLR (see e.g. Peterson 1993, and reference therein). During the past decade, the study of the BLR in some objectshasachievedconsiderablesuccess,mainlybecauseoftheincreasingnumber of coordinated multiwavelength monitoring campaigns through the international AGN Watch campaign (see e.g., Peterson 1999). In several papers, we presented resultsofourlongtermmonitoringofNGC4151,NGC5548,and3C390.3(seeTable 1). However, in this paper we present the preliminary analysis of the spectral monitoring of Ark 564 and Arp 102B during periods 1999-2009 and 1998-2009, respectively. Table1.Basicdatafortheselectedobjects: objectname,monitoringperiod,redshift, radius of the BLR determined from the Hβ line, spectral characteristics (DPL stands for double peaked line; CST for changing spectral type),AGN typeand reference. Object Period z RHβ Spectral AGNtype Reference name [years] [ld] characteristics NGC4151 1996-2006 0.0033 1-50 CST Sy. 1.5-1.8 Shapovalovaetal.2008,2010a NGC5548 1996-2004 0.0172 6-26 CST Sy. 1.0-1.8 Petersonetal.2002,Shapovalovaetal.2004 Ili´c2007,Popovi´cetal.2008 3C390.3 1995-2007 0.0561 35-100 DPL RLQSO Shapovalovaetal.2010b,Popovi´cetal.2011 Jovanovi´cetal.2010 Arp102B 1998-2009 0.0242 DPL RLQSO inprep Ark564 1999-2009 0.0247 strongFeII NLSy1 inprep Spectral monitoring was carried out at the 6-m and 1-m telescopes of SAO RASandatthe2.1-mtelescopeofINAOE(Cananea,Mexico). Observationswere fulfilled with long-slit spectrographs equipped with a CCD. The spectral range was4000-8000˚A,theresolution3-15˚A,andtheS/N>50inthecontinuumnearthe Hα and Hβ lines. For details on data acquisitions, data reduction and calibration see Shapovalova at al. (2008, 2010b). 2. PRELIMINARY RESULTS FOR Ark 564 and Arp 102B Ark 564 was the object of one of the most intensive broad-band reverberation mapping programs undertaken to date, which aimed to determine the nature of the relationship between X-ray and UV-optical continuum variations and thus obtain an estimate of the BLR size and viral mass of the central source. Ark 564 was observed by ASCA (Pounds et al. 2001, Edelson et al. 2002), Hubble Space Telescope(Collieretal. 2001,Crenshawetal. 2002)andfrommanygroundbased observatories as part of an International AGN Watch project (1998 Nov to 2001 Jan, Shemmer et al. 2001). Ark 564 has shown a strong associated UV absorber (Cranshawet al. 1999). Thereareindicationsthatit alsopossessesawarmX-ray absorber,asseenbytheabsorptionlinesofOVIIandOVIIIdetectedinaChandra spectrum (Matsumoto et al. 2001). AnexampleofaArk564spectrumobtainedfromourmonitoringofthisobject is given in Fig. 1. The variability of the flux is clearly seen (Fig 1, left panel). We also fitted one spectrum of Ark 564 using Gaussian components for all lines (see Fig 1, right panel). We fitted the region of Hβ line where we have a strong contributionofFeIImultiplet(fordetailsonfittingprocedureseeKovaˇcevi´cetal. 2010). The best-fitting is nicely following the observedspectrum (see the residual Spectral monitoring of AGNs:Preliminary results for ARK564 and ARP102B279 in Fig 1, right panel), especially the Fe II line group, that have similar widths as the intermediate line component of the Hβ line. 6000 1000 Sep 09, 1999 Oct 03, 1999 Nov 23, 2001 800 Dec 10, 2002 5000 Dec 17, 2003 600 Flux 34000000 Relative intensity 240000 0 2000 -200 -400 1000 4400 4475 4550 4625 4700 4775 4850 4925 5000 5075 5150 5225 5300 5375 5450 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 Wavelength (in A) Wavelength [A] Figure 1: Left panel: Flux variability of Ark 564. Dates are given at top left corner. Right panel: An example of fitted spectrum of Ark 564 using Gaussian components for all lines. Arp102Bemits double peaked line profiles (see Fig. 2). The simplest possible explanation for this spectral profile identifies an accretion disk as the source of theselines. TheAGNalsoshowsstronglowionizationlinesandveryweak/absent high ionization lines (Stauffer et al. 1983; Halpern et al. 1996). The weakness of the highionizationlines andabsenceofdouble peakedstructure inthemsupports the accretion disk origin under the assumption that the outer parts of the thin disk are invisible to the photoionizing source. The absence of a strong UV bump, presence of a hard X-ray source and low Eddington luminosity of this object are indicativeofanadvectiondominatedflow(AdvectionDominatedAccretionFlows (ADAF) - Ho et al. 2000). The profile shape of the broad component of Hα emission line varied strongly (see Fig. 2), but in all cases there is a prominent bump in the blue wing and less prominent one with a flat top in the red wing of the broad Hα component. 5500 Jun 24, 2002 Jul 15, 2002 5000 May 11, 2003 Mar 01, 2004 4500 4000 Flux 3500 3000 2500 2000 1500 1000 6000 6200 6400 6600 6800 7000 Wavelength [A] Figure 2: Flux variability of Arp 102B. Dates are given at top left corner. ThelineprofilesinthisAGNcouldbewell-fitbythepredictionsofamodelfor line emission from a relativistic Keplerian disk (Chen and Halpern 1989). The fit 280 A. I Shapovalova, L.Cˇ. Popovi´c, D. Ili´c et al. toArp102Bwasquitegoodbutthestatisticalimplicationswerenot. Thebestdisk modelfits tolinesinArp102Bimply anintermediateviewingangleandthatleads to the expectation of many sources with double-peaked emission lines. A search formoredoublepeakedandpeculiarprofilesamongradio-loudAGNrevealedonly ahandfulthatcouldbe reasonablywellfitbydiskmodels(EracleousandHalpern 1994). AGNwithopticallineprofileslikeArp102Bareapparentlyquiterare. They alsoappearto be almostuniquely radio-loudsources. Either mostradio-louddisk emitters (and all radio-quiet ones) produce emission at larger radii where double peaked lines are not expected or the disk contribution to the broad line emission is small or negligible. This should be investigated. More detailed analysis and discussion about monitoring of these two AGNs will be given elsewhere. ACKNOWLEDGMENTS. RFBR (grants N97-02-17625 N00-02-16272, N03- 02-17123, 06-02-16843, and N09-02-01136), State program Astronomy (Russia), CONACYT researchgrant39560-Fand54480(Mexico) andthe Ministry ofEdu- cationandScience throughthe projectAstrophysicalSpectroscopyofExtragalac- ticObjects. Wethanktheanonymousrefereeforusefulsuggestionsthatimproved the clarity of this manuscript. REFERENCES Chen K., Halpern J., 1989, ApJ, 344, 115 Collier S., Crenshaw D. M., Peterson, B. M et al., 2001, ApJ, 561, 146 Crenshaw D. M, Kraemer S. B., Boggess A. et al., 1999, ApJ, 516, 750 Crenshaw D. M., Kraemer, S. B., Turner T. J., Collier S., Peterson B. M., et al., 2002,566, 187 Edelson R., Turner T. J., Pounds K. et al., 2002,ApJ, 568, 610 Eracleous M., Halpern J., 1994, ApJSS, 90, 30 Halpern J. P., Eracleous M., Filippenko A. V., Chen K., 1996, ApJ, 464, 704 Ho L. C., Rudnick G., Rix H. W., et al, 2000, ApJ, 541, 120 Ili´c D., 2007, SerAJ, 175, 15 Jovanovi´cP., Popovi´c L. Cˇ. et al., 2010, ApJ, 718, 168 Kollatschny W. and Dietrich M. 1997,A&A, 323, 5 Kovaˇcevi´cJ., Popovi´c L. Cˇ, Dimitrijevi´c M. S., 2010, ApJS, 189, 15 Matsumoto C., Leighly K. M., Marshall H. L., 2001, In X-ray Emission from Ac- cretionontoBlackHoles,ProceedingsofajointworkshopheldbytheCenterfor Astrophysics (Johns Hopkins University) and the Laboratory for High Energy Astrophysics (NASA/ Goddard Space Flight Center) in Baltimore, MD, June 20-23,2001, Eds.: T. Yaqoob and J. H. Krolik 570 Peterson B. M., 1993, PASP, 105, 207 Peterson B. M., 1999, ASPC, 175, 49 Peterson B. M., Berlind P. et al., 2002, ApJ, 581, 197 Shapovalova A. I, Doroshenko V.T. et al., 2004, A&A, 422, 925; Popovi´c L. Cˇ., Shapovalova A. I., et al, 2008, PASJ, 60, 1 Popovi´c L. Cˇ., Shapovalova A. I., et al, 2011, A&A, 528, 130 Pounds K., Edelson, R., Markowitz A., Vaughan S., 2001, ApJ, 550, L15 Shapovalova A. I.,Popovi´c L. Cˇ., et al, 2008, A&A, 486, 99 Shapovalova A. I.,Popovi´c L. Cˇ., et al, 2010a,A&A, 509, 106 Spectral monitoring of AGNs:Preliminary results for ARK564 and ARP102B281 Shapovalova A. I.,Popovi´c L. Cˇ., et al, 2010b, A&A, 517, 42 Shemmer O., Romano P., Bertram R., Brinkmann W., et al, 2001, ApJ, 561, 162 Stauffer J., Schild R., Keel W, 1983, ApJ, 270, 465 Sulentic J. W. et al., 2000,ARA&A, 38, 521 Wanders I., Peterson B. M., 1996, ApJ, 466, 174

See more

The list of books you might like